

Les nouveaux Cathoscopes MAZDA

C. 30 S.

8. SA

10. SA

C. 127. S.

18. MA. 4

31. MC 4.

31. MR. 4

26. MG. 4

31. MG. 4

31. MS. 4

Cathoscope pour oscillographie - Diamètre d'écran 3 cms - Concentration et déflexion statiques - Écran vert ou bleu actinique.

Cathoscope pour oscillographie - Diamètre d'écran : 7,5 cms - Faible consommation d'anode N° 1 et excellente concentration grâce à un canon à électrodes fractionnées. Grande sensibilité des deux jeux de plaques déflectrices. Ecran vert non persistant ou vert persistant ou bleu actinique.

Cathascope pour oscillographie - Diamètre d'écran : 9,5 cms - Faible consommation d'anode N° 1 et excellente concentration grâce à un canon à électrodes fractionnées. Grande sensibilité des deux jeux de plaques déflectrices. Ecran vert non persistant ou vert persistant ou bleu actinique.

Cathoscope pour oscillographie: Diamètre d'écran: 12,7 cms - Faible consommation d'anode N° 1 et excellente cancentration grâce à un canon à électrodes fractionnées. Grande sensibilité des deux jeux de plaques déflectrices. Ecran vert non persistant ou vert persistant ou bleu actinique.

Cathoscope pour télévision - Diamètre d'écran : 18 cms : Structure triode. Concentration et déflexion magnétique. Ecran blanc.

Cathoscope paur télévision - Diamètre d'écran : 31 cms - Structure tétrade avec piège à ions éliminant les risques de tache ionique. Ecran blanc, Définition maximum : 850 lignes.

Cathoscope pour télévision - Diamètre d'écran : 31 cms : Structure tétrode avec piège à ions éliminant les risques de tache ionique. Ecran blanc avec miroir d'aluminium procurant une luminosité accrue à tension anodique élevée. Définition maximum : 850 lignes.

Cathoscope pour télévision - Diamètre d'écran : 25 cms - Ampaule à fond plat. Structure tétrode avec piège à lans éliminant les risques de tache lanique. Ecran blanc. Définition maximum : 850 lignes.

Cathoscope pour télévision - Diamètre d'écran : 31 cms - Ampoule à fand plat. Structure têtrade avec piège à lans éliminant les risques de tache lanique. Ecran blanc. Définition maximum : 850 lignes.

Cathoscope pour télévision - Diamètre d'écran : 31 cms - Ampoule à fond plat. Structure tétrode avec piège à ions éliminant les risques de tache ionique. Ecran blanc avec miroir d'aluminium procurant une luminosité accrue à tension anadique élevée. Définition maximum : B50 lignes.

Les cathoscopes C. 1275. - 26.MG et 31.MG peuvent être faurnis avec écran radar à langue persistance.

DEM

NDF7 LA DOCUMENTATION R &

LAMPE MAZDA

COMPAGNIE DES LAMPES - DÉPARTEMENT RADIO 29, RUE DE LISBONNE - PARIS (VIII°) - TÉLÉPHONE : LABORDE 72-60 A 68

INTRODUCTION

DOCUMENTATION SUR LES LAMPES

Radio, télévision, électronique: toutes ces techniques modernes doivent leur existence aux tubes électroniques. Voilà pourquoi la documentation de base dont aucun technicien ne peut se passer est celle relative aux lampes.

Un premier moyen d'information consiste, pour le praticien, à recueillir le maximum de notices qu'impriment les fabricants de tubes, et à les compléter par les articles documentaires que publient, de temps à autre, les revues spécialisées. Moyen bien incommode, car, en admettant même que la totalité des documents puisse parvenir aux intéressés, chacun d'eux devrait, sous peine de perdre un temps considérable lors des recherches, se donner une fois pour toutes la peine de classer, compléter, unifier — et parfois vérifier — un monceau de documents.

Ce travail ingrat, des spécialistes l'entreprennent régulièrement, et le fruit de leurs efforts est condensé dans un certain nombre de publications qui ne manquent pas d'être les bienvenues de tous ceux, ô combien nombreux, dont le travail ou les loisirs ont pour points vitaux les tubes électroniques. Quels sont ces ouvrages ?

Le premier en date est le LEXIQUE OFFICIEL DES LAMPES RADIO, de L. Gaudillat, qui condense, sous un format et une disposition commodes, les données numériques et culots d'une foule de tubes courants.

Très populaire également est RADIO TUBES, de E. Aisberg, L. Gaudillat et D. Deschepper, avec ses renseignements jaillissant du ou des schémastypes d'utilisation fournis pour chaque lampe.

Pour les techniciens désireux d'approfondir une étude, de connaître les capacités inter-électrodes, de travailler sur une courbe, une belle documentation fut réunie dans les albums de CARACTERISTIQUES OFFICIELLES DES LAMPES RADIO, qui présentent toute la gamme des tubes courants dans ses quatre volumes :

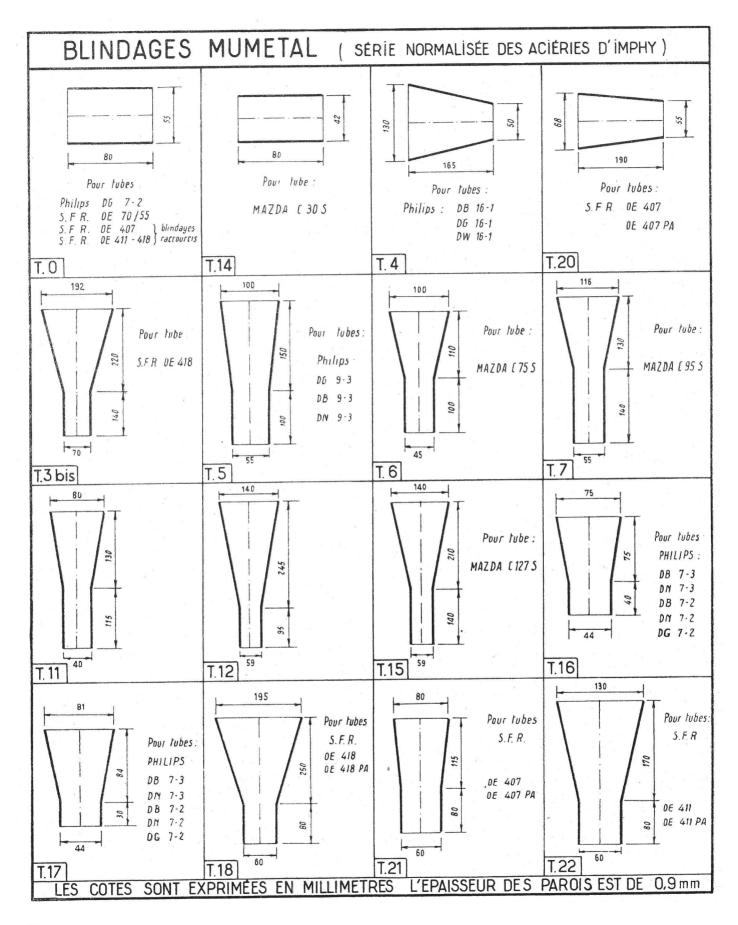
1 : Lampes européennes transcontinentales. — 2 : Américaines, Série octale. — 3 : Série Rimlock-Médium. — 4 : Série miniature.

On trouvera à la page 32 du présent recueil la table des matières des quatre albums précédents. Les cinq fascicules ont une présentation et un format communs et peuvent donc être groupés en une collection homogène et d'emploi fructueux.

TUBES A RAYONS CATHODIQUES

Il restait une lacune à combler : en effet, tous les ouvrages précédents, consacrés aux tubes normaux, n'avaient pu traiter des tubes cathodiques.

Les utilisateurs des « tubes à images » sont cependant nombreux : constructeurs et possesseurs d'oscilloscopes, techniciens de la télévision, « radaristes », etc. Nous espérons qu'ils réserveront un bon accueil à cet album n° 5, qui présente des renseignements probablement plus rares, car plus épars à l'origine, que ceux relatifs aux tubes classiques.


Contrairement à ces derniers, les tubes cathodiques n'ont ni les mêmes caractéristiques, ni la même appellation chez les différents fabricants français : c'est pourquoi nous les avons groupés par marque, les marques étant classées par ordre alphabétique.

En tête de chaque groupe, nous avons présenté les renseignements particuliers au constructeur, et principalement le code employé pour les appellations. La connaissance de ce code, souvent très simple et intuitive, permettra de dégager d'un coup d'œil les caractéristiques maîtresses d'un tube inconnu. Nous avons ensuite présenté individuellement tous les tubes annoncés comme faisant partie de la série courante par chaque constructeur. Toutes les fois que ceci a été matériellement possible, nous avons ajouté au croquis du culot et des cotes du tube une photographie qui aidera à se le représenter. Nous pensons avoir ainsi facilité la recherche éventuelle d'un tube convenant à un montage donné.

Les capacités inter-électrodes n'ont pas été oubliées ; il est convenu que chaque fois qu'une électrode est citée seule, la capacité indiquée est celle mesurée entre cette électrode et toutes les autres connectées ensemble.

Les caractéristiques des types anciens figurent également, sous forme de tableaux synoptiques, de même que celles de certains tubes U.S.A. qui ont été introduits en France ou nous semblent susceptibles de l'être. Enfin, nous avons consacré une page à un accessoire souvent indispensable du tube cathodique : le blindage en mumétal.

Ainsi conçu, le présent album sera, nous l'espérons, un précieux outil de travail pour tous les électroniciens.

C.D.C. - S.F.R.

GÉNÉRALITÉS

Nous avons groupé dans les pages qui vont suivre un certain nombre de tubes vendus par la Compagnie des Compteurs. Certains d'entre eux — les magnétiques — sont fabriqués par la C.d.C.; d'autres — les électrostatiques — sont fabriqués par la S.F.R. C'est pourquoi les deux marques figurent au haut de cette page.

Le code employé par la C.d.C. pour l'appellation des tubes est le suivant :

La première lettre indique le type : E pour les électrostatiques ; M pour les magnétiques ;

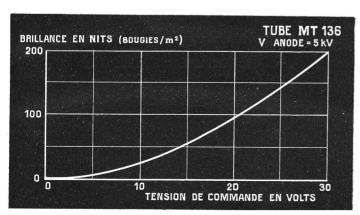
La lettre suivante caractérise l'écran : T pour le blanc (télévision) ; V pour le vert ; B pour le bleu ; R_1 et R_2 pour les écrans verts à rémanence ; P pour un écran persistant tendant vers le bleu ;

Vient ensuite un chiffre, choisi arbitrairement pour différencier des tubes de même diamètre ;

Le chiffre suivant correspond au diamètre, exprimé en centimètres ;

Enfin, une lettre peut être ajoutée pour préciser certaines particularités : A pour un écran aluminisé ; S pour un tube spécial, etc...

Exemple:

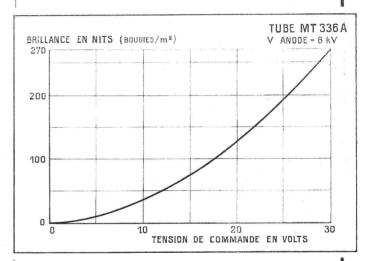

Le MT 336 A est un tube magnétique pour Télévision, de 36 cm de diamètre, à écran aluminisé.

Chez S.F.R., le code est le suivant :

La première lettre, O, est l'initiale de « oscillographie » ;

La lettre suivante, E, est celle de « électrostatique » ;

Brillance, en fonction de la tension de grille d'un tube non aluminisé.


Le premier chiffre est arbitraire et désigne le

Les deux chiffres suivants indiquent le diamètre en centimètres :

Enfin, un suffixe permet éventuellement de préciser la couleur de l'écran ou les particularités.

Exemple:

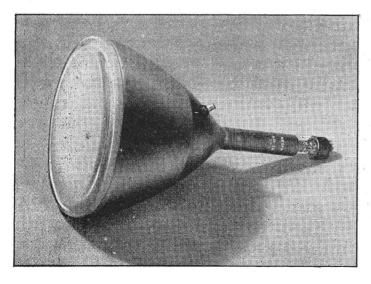
Le OE 407 PA est un tube électrostatique de 7 cm à post-accélération.

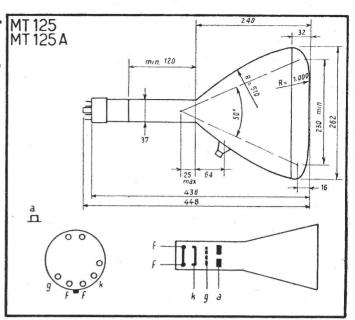
Brillance, en fonction de la tension de grille, d'un tube

Nous avons dit que la C.d.C. s'était spécialisée dans la fabrication des tubes magnétiques. Parmi les perfectionnements apportés aux nouveaux modèles, il convient de remarquer l'aluminisation. Cette technique, qui consiste à recouvrir l'arrière de l'écran d'une mince couche d'aluminium, offre de nombreux avantages : augmentation du contraste (effet de miroir) ; décharge plus rapide de l'écran (électrons écoulés plus facilement vers l'anode) ; brillance maximum supérieure, par suppression du palier de saturation ; enfin, d'après les techniciens de la C.d.C., un écran convenablement aluminisé est protégé contre le phénomène de la tache ionique (dont il sera parlé plus loin) : le piège à ions devient alors inutile.

C.D.C.

MT 125

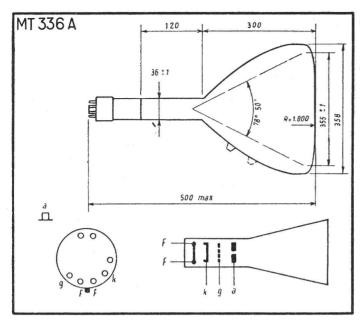

TUBE ÉLECTROMAGNÉTIQUE DE 25 cm A FOND PLAT, POUR TÉLÉVISION


CULOT	CHAU	FFAGE
Duodécal 7 broches	6,3 V	0,8 A
CAPACITES		
Grille		5 pF 6 pF
Cathode		6 pF
CARACTERISTICHES D'HTHI	SATION	J

Tension d'anode	5 kV
Tension de grille I correspon-	
dant à l'extinction du spot	
immobile	—20 à —50 V
Tension de modulation (crête)	20 à 30 V
Dimensions de l'image	150 ×200 mm

CARACTERISTIQUES LIMITES

O (/// CO / MICHO!) Q MO MICHIE	
Tension minimum d'anode	3 kV
Tension maximum d'anode	10 kV
Tension minimum de grille	0 V '
Tension maximum de grille	—125 V
Courant moyen maximum de fais-	
ceau	200 μ A
Brillance correspondante	30 nits
(I nit = I bougie par mètre carré)	
Tension maximum filament-cathode	80 V
Isolement filament-cathode	10 M Ω



MT 125 A

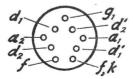
TUBE ÉLECTROMAGNÉTIQUE DE 25 cm A ÉCRAN ALUMINISÉ, POUR TÉLÉVISION

CULOT	CHAUFFAGE
Duodécal 7 broches	6,3 V 0,8 A
CAPACITES	
Grille	
CARACTERISTIQUES D'UTIL	ISATION
Tension d'anode (450 lignes) (819 lignes)	8 kV 10 kV
Tension de grille I correspon- dant à l'extinction du spot im- mobile —	-15 à —55 V
Tension de modulation (crête)	20 à 30 V
Dimensions de l'image	150 × 200 mm
CARACTERISTIQUES LIN	MITES
Tension minimum d'anode Tension maximum d'anode Tension minimum de grille Tension maximum de grille Courant maximum de faisceau Brillance correspondante Tension maximum filament-cathode Isolement filament-cathode	10 kV 0 V —125 V 250 μA 30 nits 80 V

L'emplacement du téton d'anode peut être modifié en cours de fabrication ; de toute façon, il sera situé sur un segment limité par les cercles de diamètres 130 et 200 mm.

Anciens tubes C.D.C.

MT 118 et 118 A; MT 136 et 136 A


EV, EB, ET et EP 311 et 327

Tubes électrostatiques de 11 et 27 cm

Chauffage	4 V I A
Tension d'anode 2	800 à 2500 V
Tension d'anode I	20 à 25 % de H.T. _{a2}
Sensibilités :	
Plaques d ₁ : 311	0,5 à 0,2 mm/V
327	1,2 à 0,5 mm/V
Plaques d ₂ : 311	0,35 à 0,15 mm/V
327	0.8 à 0.3 mm/V

CULOT

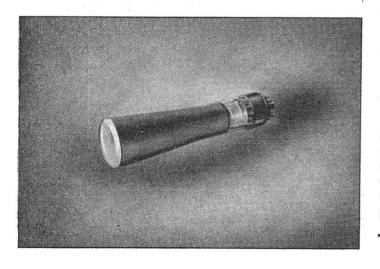
E-311, E-327

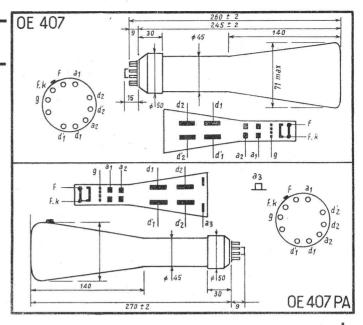
C.D.C.

MT 336 A

TUBE ÉLECTROMAGNÉTIQUE DE 36 cm A ÉCRAN ALUMINISÉ, POUR TÉLÉVISION

CULOT	CHAUFFAGE
Duodécal 7 broches	6,3 V 0,8 A
CAPACITES	
Grille Cathode	
CARACTERISTIQUES D'UTIL	ISATION
Tension d'anode (450 lignes) (819 lignes)	8 kV 8 à 10 kV
Tension de grille I correspon- dant à l'extinction du spot immobile	15 à55 V 20 à 30 V 220 × 300 mm
CARACTERISTIQUES LIN	/ITES
Tension maximum d'anode Tension minimum de grille Tension maximum de grille Courant maximum de faisceau Brillance correspondante Tension maximum filament-cathode	0 V 125 V 250 μA 30 nits
Tension maximum de grille Courant maximum de faisceau Brillance correspondante	—125 V 250 μA 30 nits 80 V




C. D. C. - S. F. R.

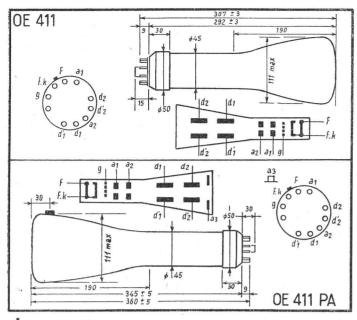
OE 407

TUBE ÉLECTROSTATIQUE DE 7 cm POUR OSCILLOGRAPHIE

CULOT Serácial 10 hazaban		FFAGE
Spécial 10 broches	0,3 V	0,5 A
CAPACITES		
Grille I Plaque déviation d ₁ Plaque déviation d' ₁ Plaque déviation d ₂ Plaque déviation d' ₂ Plaque d ₁ à plaque d' ₁ Plaque d ₂ à plaque d' ₂		9 pF 8 pF 8 pF 11 pF 11 pF 4 pF 4 pF
CARACTERISTIQUES D'UTIL	ISATION	1
Tension de grille I corres- pondant à l'extinction du		٧
CARACTERISTIQUES LIN	MITES	
Tension minimum d'anode 2 Tension maximum d'anode 2 Tension maximum d'anode I Tension minimum de grille I Tension maximum de grille I Le tube O E 407	2	000 V 200 V 300 V 0 V -120 V

OE 407 PA

TUBE ÉLECTROSTATIQUE DE 7 cm A POST-ACCÉLÉRATION, POUR OSCILLOGRAPHIE


CULOT		CHA	CHAUFFAGE 6,3 V 0,5 A			
Spécial	10	broches	6,3	٧	0,5	Α
Spécial	10	broches	6,3	٧		0,5

CAPACITES Voir OE 407

CARACTERISTIQUES D'UTILISATION

Tension d'anode 3	2 000 V
Tension d'anode 2	I 000 V
Tension d'anode I	100 à 160 V
Tension de grille I corres-	
pondant à l'extinction du	
spot	—25 à —55 V
Sensibilité plaques I	0,35 mm/V
Sensibilité plaques 2	0,35 mm/V

Tension	maximum	d'anode	3	4. 4			4 000	٧
Tension	maximum	d'anode	2	8 8	8		2 000	٧
Tension	maximum	d'anode	1			 V 14	350	٧
	minimum							
Tension	maximum	de grille	١.				-120	V
Rapport	maximum	V_{a3}/V_{a2}		8.9			2	

OE 411 PA

TUBE ÉLECTROSTATIQUE DE 11 cm A POST-ACCÉLÉRATION, POUR OSCILLOGRAPHIE

CULOT CHAUFFAGE 6,3 V 0,5 A

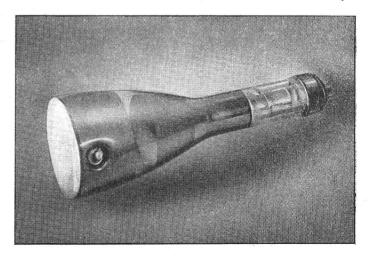
Voir OE 411

CARACTERISTIQUES D'UTILISATION

Tension d	anode 3			3 000	٧
Tension d	anode 2	6.3		1 500	
Tension d	'anode I			300 à 500	V
Tension de	grille co	rre	spon-		
dant à	l'extinc	tion	n du		
spot .				30 à75	٧
Sensibilité	plaques	1			mm/V
Sensibilité	plaques	2	K 100 K K	0,3	mm/V

CARACTERISTIQUES LIMITES

4 000	٧
2 000	٧
650	٧
0	٧
100	٧
2	
	2 000 650 0 —100


Le tube O E 411 P A >>>

C. D. C. - S. F. R.

OE 411

TUBE ÉLECTROSTATIQUE DE 11 cm POUR OSCILLOGRAPHIE

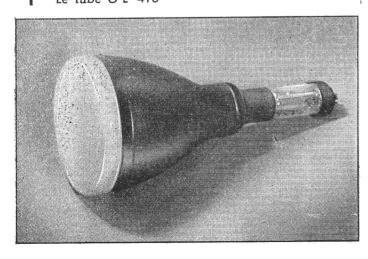
CULOT	CHAUFFAGE
Spécial 10 broches	6,3 V 0,5 A
CAPACITES	
Grille I Plaque déviation d' ₁ Plaque déviation d ₂ Plaque déviation d ₂ Plaque déviation d' ₂ Plaque d ₁ à plaque d' ₁ Plaque d ₂ à plaque d' ₂	8 pF 8 pF 8,5 pF 8,5 pF 4 pF
CARACTERISTIQUES D'UTIL	ISATION
Tension d'anode 2 Tension d'anode I 10 Tension de grille I corres- pondant à l'extinction du	1 000 V 0 à 160 V
spot — 25 Sensibilité plaques 1 Sensibilité plaques 2	à —55 V 0,5 mm/V 0,5 mm/V
CARACTERISTIQUES LIN	MITES
Tension minimum d'anode 2 Tension maximum d'anode 2 Tension maximum d'anode I Tension minimum de grille I Tension maximum de grille I	2 200 V 300 V 0 V

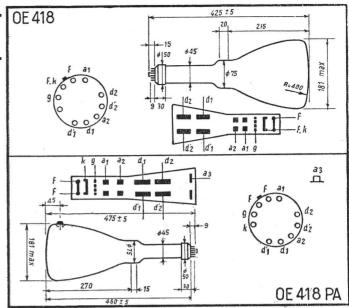
C. D. C. - S. F. R.

OE 418

TUBE ÉLECTROSTATIQUE DE 18 cm POUR OSCILLOGRAPHIE

Many Commission Commis	
CULOT	CHAUFFAGE
Spécial 10 broches	6,3 V 0,5 A
CAPACITES	
Grille I Plaque déviation d ₁ Plaque déviation d' ₁ Plaque déviation d ₂ Plaque déviation d' ₂ Plaque d ₁ à plaque d' ₁ Plaque d ₂ à plaque d' ₂	13 pF 13 pF 11,5 pF 11,5 pF 10 pF


CARACTERISTIQUES D'UTILISATION


Tension d'anode 2	2 000	٧
Tension d'anode I	450 à 600	٧
Tension de grille I corres-		
pondant à l'extinction		
du spot	—50 à —100	V
Sensibilité plaques I		mm/V
Sensibilité plaques 2	0,45	mm/V

CARACTERISTIQUES LIMITES

Tension	minimum	d'anode	2	******	I 500 V
Tension	maximum	d'anode	2		2 500 V
Tension	maximum	d'anode	1		800 V
					0 V
					-125 V

Le tube O E 418

OE 418 PA

TUBE ÉLECTROSTATIQUE DE 18 cm A POST-ACCÉLÉRATION, POUR OSCILLOGRAPHIE

CULOT	CHAU	FFAGE
Spécial 10 broches	6,3 V	0,3 A

CAPACITES Voir OE 418

CARACTERISTIQUES D'UTILISATION

Tension d'anode 3	4 000 V
Tension d'anode 2	2 000 V
Tension d'anode I	400 à 650 V
Tension de grille I corres-	
pondant à l'extinction du	
faisceau	—35 à —80 V
Sensibilité plaques I	0,35 mm/V
Sensibilité plaques 2	0,35 mm/V

Tension	maximum	d'anode	3			÷	2	5 000 V
	maximum							
Tension	maximum	d'anode				8		800 V
	minimum							0 V
Tension	maximum	de grille	1		. 10	v	ž	—100 V
	maximum							

COMPAGNIE DES LAMPES

MAZDA

GÉNÉRALITÉS

Chez Mazda, les tubes cathodiques s'appellent « Cathoscopes », ce qui a le mérite d'être bref et de rappeler que, destinés aux mesures ou à la télévision, toutes ces lampes possèdent en commun la propriété de traduire un courant électrique en une image. Pour les désigner, deux codes furent successivement employés :

Premier code

La première lettre, C, indique qu'il s'agit d'un tube à rayons cathodiques ;

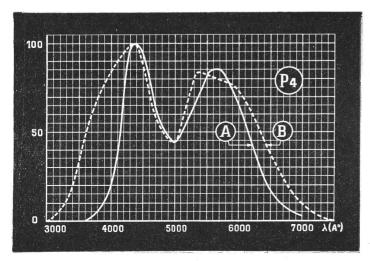
Vient ensuite un nombre de deux à trois chiffres indiquant le diamètre de l'écran mesuré en millimètres ;

Le troisième symbole est une lettre : S pour les tubes à concentration et déviation statiques ; M pour les magnétiques ;

Puis vient une lettre significative de la couleur de l'écran :

B pour bleu;
J pour jaune;

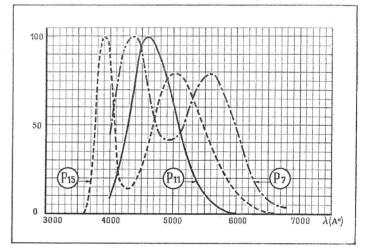
V pour vert; W pour blanc;


Enfin, un chiffre (I à...) différencie deux types de même dénomination, mais aux caractéristiques, électriques ou autres, différentes (le chiffre 2 étant toutefois réservé aux écrans persistants).

Exemples:

Le C 75 SV I est un tube de 75 mm, statique, à écran vert :

Le C 310 MW I est un tube de 310 mm, magnétique, à écran blanc.


Répartition spectrale de l'énergie lumineuse pour deux catégories légèrement différentes d'écrans blancs.

Deuxième code

(Appliqué aux nouveaux types créés à partir de janvier 1950.)

En tête, un nombre de un ou deux chiffres, correspondant au diamètre d'écran mesuré en centimètres et arrondi au centimètre supérieur ;

Répartition spectrale de l'énergie lumineuse pour des écrans des types P-7, P-11 et P-15.

Puis, la lettre S ou M (statique ou magnétique):

Ensuite, une lettre, choisie arbitrairement, et qui désigne l'ordre de la série du type;

Enfin, un nombre de un ou deux chiffres, caractéristique de l'écran, conformément au code américain du R.T.M.A. :

1 : vert;

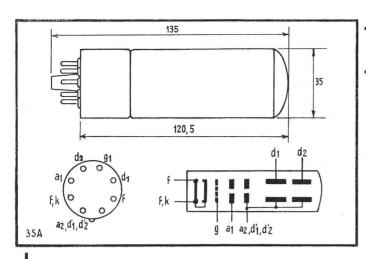
5 : bleu;

2 : vert persistant;

7 : grande persistance ;

4 : blanc :

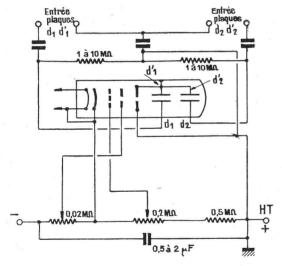
II : bleu actinique.


Exemples:

Le 31 MC 4 est un tube de 31 cm, magnétique, à écran blanc ;

Le 31 MR 4 est un tube analogue, à écran aluminisé.

Les 26 MG 7, 31 MC 7, 31 MG 7 sont des tubes à écrans rémanents, destinés au radar.


On notera que, chez Mazda, tous les types anciens demeurent disponibles.

CULOT CHAUFFAGE Octal 8 broches 6,3 V 0,6 A

CAPACITES

Grille I								٠				10,5	pF
Plaque d ₁	à	plaque	d'_1			8	÷	ě	•	٠	÷	4,3	pF
Plaque d ₂												3,6	pF

Circuit-type d'alimentation des tubes de cette série.

NOTES

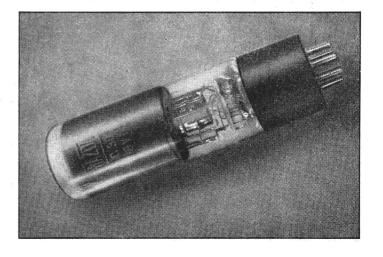
La tension de grille correspondant à l'extinction est de —90 V pour 125 V sur l'anode I.

Les plaques d'₁ et d'₂ sont réunies intérieurement à l'anode 2 ; il est recommandé de connecter cet ensemble à la masse.

Les tubes de la série C 30 S, de dimensions réduites, sont le plus souvent utilisés comme indicateurs visuels (formes de courants, contrôle de fréquences, profondeur de modulation, etc.).

MAZDA

C 30 S V1 · C 30 S V2 C 30 S W1 · C 30 S B1


TUBES ÉLECTROSTATIQUES DE 3 cm POUR OSCILLOGRAPHIE

CARACTERISTIQUES D'UTILISATION

Premier exemple:

Tension d'anode 2	400 V
Tension d'anode I	80 V
Sensibilité plaques I	0,13 mm/V
Sensibilité plaques 2	0,09 mm/V
Deuxième exemple :	
Tension d'anode 2	500 V
Tension d'anode I	100 V
Sensibilité plaques I	0,1 mm/V
Sensibilité plaques 2	0.07 mm/V

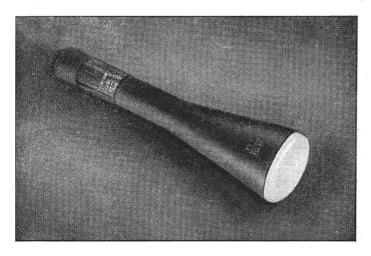
		•
Tension maximum d'anode 2	550	٧
Tension maximum d'anode I	125	٧
Tension minimum de grille	0	٧
Tension maximum de grille	90	٧
Tension maximum entre anode I		
et une plaque quelconque de		
déviation	250	٧
Résistance maximum dans la grille	1,5	$M\Omega$
Dissipation maximum de l'écran	5	mW/cm

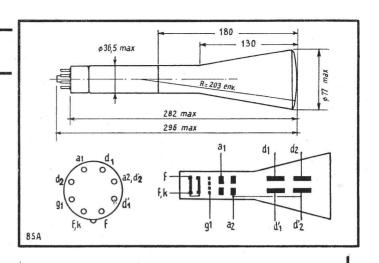
8 SA 1 8 SA 2 8 SA 4 8 SA 5

TUBES ÉLECTROSTATIQUES DE 8 cm POUR OSCILLOGRAPHIE

CULOT	CHAUFFAGE
Octal 8 broches	6,3 V 0,6 A

CAPACITES

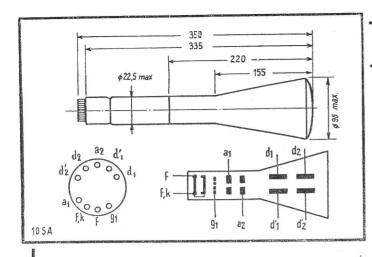

Grille	I							,							1	0	рF
Plaque																3	рF
Plaque	d_2	à	plaque	ď;	2			÷		-			÷	ä		4	рF


NOTES

La tension de grille correspondant à l'extinction est de -35 V pour I 200 V sur l'anode 2.

La plaque d'2 est réunie intérieurement à l'ano-

Les tubes de la série 8 S A sont des versions améliorées de ceux de la série C 75 S. Les caractéristiques électriques sont communes aux deux séries, sauf l'intensité de chauffage : 0,6 A pour les 8SA et 0,8 A pour les C 75 S; d'autre part, les C 75 S ont une longueur légèrement supérieure (312 mm hors-tout).



CARACTERISTIQUES D'UTILISATION

Premier exemple :	
Tension d'anode 2	600 V 170 V
Sensibilité plaques 1 Sensibilité plaques 2	0,58 mm/V 0,55 mm/V
Sensibilité piaques 2	O ₁ 55 mm/ V
Deuxième exemple :	
Tension d'anode 2	800 V
Tension d'anode I	230 V
Sensibilité plaques 1	0,44 mm/V 0,41 mm/V
Sensibilite plaques 2	0,41 mm/ ¥
Troisième exemple :	
Tension d'anode 2	1 000 V
Tension d'anode I	285 V
Sensibilité plaques I	0,35 mm/V
Sensibilité plaques 2	0,33 mm/V
Quatrième exemple :	
Tension d'anode 2	I 200 V
Tension d'anode I	345 V
Sensibilité plaques I	0,29 mm/V
Sensibilité plaques 2	0,27 mm/V
CARACTERISTIQUES LIMI	TES

Tension maximum d'anode 2	1 200	٧
Tension maximum d'anode I	400	٧
Tension minimum de grille	0	٧
	35	٧
Tension maximum entre anode 2 et une plaque quelconque de		
déviation	600	V
Résistance maximum dans la grille Dissipation maximum de l'écran		$M\Omega$ mW/cm ²

CARACTERISTIQUES D'UTILISATION

Premier exemple :	
Tension d'anode 2 Tension d'anode I Sensibilité plaques I Sensibilité plaques 2	800 V 200 V 0,62 mm/V 0,6 mm/V
Deuxième exemple :	
Tension d'anode 2 Tension d'anode I Sensibilité plaques I Sensibilité plaques 2	1 000 V 240 V 0,5 mm/V 0,48 mm/V
Troisième exemple :	
Tension d'anode 2 Tension d'anode I Sensibilité plaques I Sensibilité plaques 2	1 200 V 280 V 0,42 mm/V 0,4 mm/V
Quatrième exemple :	
Tension d'anode 2 Tension d'anode I Sensibilité plaques I Sensibilité plaques 2	1 400 V 320 V 0,37 mm/V 0,35 mm/V
CARACTERISTIQUES LIM	ITES

Tension maximum d'anode 2

Tension maximum d'anode I

Tension minimum de grille

Tension maximum de grille Tension maximum entre anode 2 et une plaque quelconque de

déviation Résistance maximum dans la grille

Dissipation maximum de l'écran.

I 500 V

450 V

--55 V

600 V

1.5 M Ω

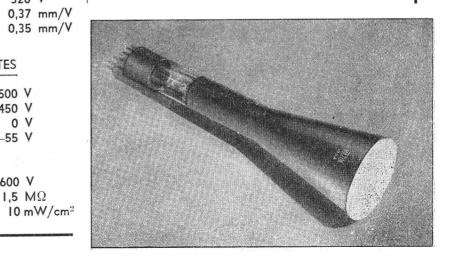
0 V

MAZDA

10 SA 1 10 SA 2 10 SA 4 10 SA 5

TUBES ÉLECTROSTATIQUES DE 10 cm POUR OSCILLOGRAPHIE

CULOT CHAUFFAGE 6.3 V 0.6 A Spécial à 9 broches


CAPACITES

Grille		12	pΕ
Plaque	d ₁ à plaque d' ₁	2	pF
Plaque	d_2 à plaque d'_2	3	pΕ

NOTES

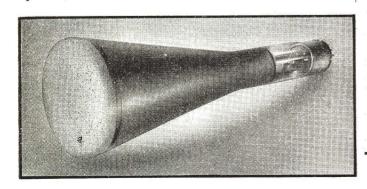
La tension de grille correspondant à l'extinction est de -55 V pour 450 V sur l'anode I.

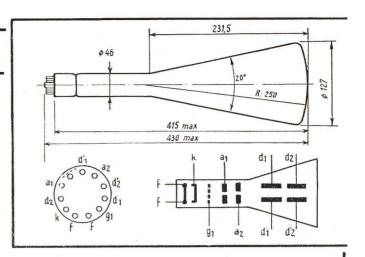
Les tubes de la série 10 S A sont des versions améliorées de ceux de la série C 95 S. Les caractéristiques électriques sont communes aux deux séries, sauf l'intensité de chauffage : 0,6 A pour les 10 S A et 0,8 A pour les C 95 S; ces derniers sont d'autre part légèrement plus longs : 355 mm hors-

C127 S V1 C127 S V2 C127 S W1 C127 S B1

TUBES ÉLECTROSTATIQUES DE 13 cm POUR OSCILLOGRAPHIE

CULC	OT	CH.	ΑU	FFAG	SE
Magnal II	broches	6,3	٧	0,6	Α


CAPACITES

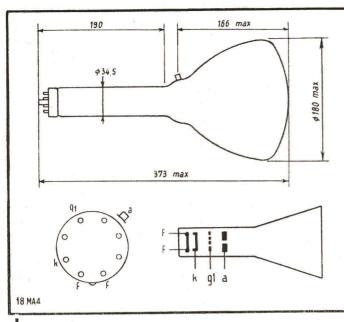

Grille I	8 pl	F
Plaque déviation d ₁	12 pF	F
Plaque déviation d'1	7,5 pl	F
Plaque déviation d ₂	9,5 pF	F
Plaque déviation d'2	7,5 pF	=
Plaque d ₁ à plaque d' ₁	1,2 pF	=
Plaque d ₂ à plaque d' ₂	1,3 pF	=

NOTES

Axe de déviation : lorsque d_2 est positive par rapport à d'_{21} le spot est dévié vers la broche correspondant à l'anode 1.

Les tubes C 127 S, comme les tubes des séries 8 SA et 10 SA, bénéficient d'une nouvelle structure comportant en particulier un canon à deuxième anode fractionnée, ce qui supprime la consommation de l'anode I et rend la concentration indépendante de la luminosité.

CARACTERISTIQUES D'UTILISATION


Premier		1	
Promier	avama	0	
1 10111101	CYCLLID		

Tension d'anode 2	1 500	V
Tension d'anode I	340	٧
Tension de grille correspondant à		
l'extinction du spot	30	V
Sensibilité plaques I	0,44	mm/V
Sensibilité plaques 2	0,4	mm/V
* * *		

Deuxième exemple :

Tension d'anode 2	2 000	٧
Tension d'anode I	450	٧ .
Tension de grille correspondant à		
l'extinction du spot	-40	٧
Sensibilité plaques I	0,33	mm/V
Sensibilité plaques 2	0,3	mm/V

Tension d'anode 2	2 200 V
Tension d'anode I	1 100 V
Tension minimum de grille	0 V
Tension maximum de grille	-125 V
Tension maximum entre anode 2	
et une plaque quelconque de dé-	
viation	550 V
Tension maximum filament-cathode	100 V
Résistance maximum dans la grille	1,5 M Ω
Impédance maximum du circuit	
d'une plaque de déviation (à la	
fréquence d'alimentation du fila-	
ment)	ΙΜΩ
Résistance maximum dans le circuit	
d'une plaque de déviation	5 M Ω

CULOT	CHAU	FFAGE
Octal 8 broches	6,3 V	0,6 A
CAPACITES		
Grille Cathode		
CARACTERISTIQUES D'UTILI	SATION	1
Tension d'anode Tension de grille correspon- dant à l'extinction de	3	3,5 kV
	,5 à <i></i> ⁴	42 V
ceau variant de 0 à 100 μA Tension de commande moyenne (valeur de crête)		18 V
pour un courant de fais- ceau variant de 0 à 150 μΑ Tension de commande maximum (valeur de crê-		21 V
te) pour un courant de faisceau variant de 0 100 μA Tension de commande maximum (valeur de crête) pour un courant de	* 2	21 V
faisceau variant de 0 à 150 μA	24 05 × 14	,5 V 40 mm

18 MA 4

TUBE ÉLECTROMAGNÉTIQUE DE 18 cm POUR TÉLÉVISION

NOTES

Le 18 MA 4 est un tube à concentration et déviation électromagnétiques à structure triode et écran blanc.

La valeur indiquée comme tension d'anode doit être considérée comme une valeur minimum et devra être augmentée si on désire une plus forte brillance. On n'oubliera cependant pas que, dans cette catégorie de tubes cathodiques, la puissance à mettre en jeu pour le balayage croît proportionnellement à la tension d'anode ; de toute façon, on évitera de dépasser pour cette dernière la valeur de 4,5 kV.

Une résistance de protection de 25 $k\Omega$ environ devra être prévue entre alimentation T.H.T. et anode du tube. D'autre part, il faudra ménager un enroulement séparé et bien isolé pour le chauffage du tube, et relier une extrémité du filament à la cathode.

Pour un réglage de la concentration tel que les lignes de l'image soient invisibles à une distance d'observation égale à 6 fois la hauteur de l'image, la concentration exige environ 450 ampères-tours.

23 MA 4

C 220 M W1

TUBE ÉLECTROMAGNÉTIQUE DE 23 cm POUR TÉLÉVISION

CULOT

CHAUFFAGE

Octal 8 broches

6.3 V 0.6 A

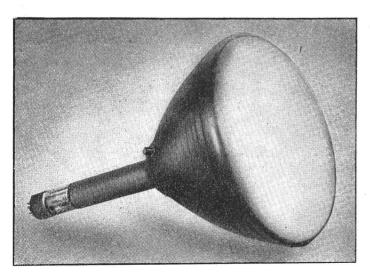
CAPACITES

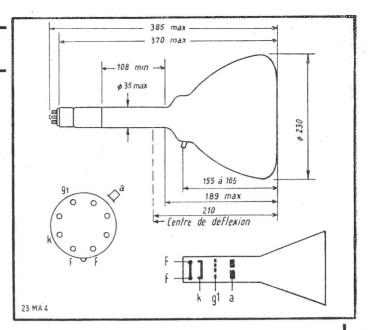
Grille																					рF
Cathode		×	10	æ	×	200		ě		•		ŀ	÷	•	ä	ě		ě	9	8	рF

CARACTERISTIQUES D'UTILISATION

Tension d'anode 5 kV

Tension de grille correspondant à l'extinction de l'image —28 à —62 V


Tension de commande moyenne (valeur de crête) pour un courant de faisceau variant de 0 à 150 µA — 26 V

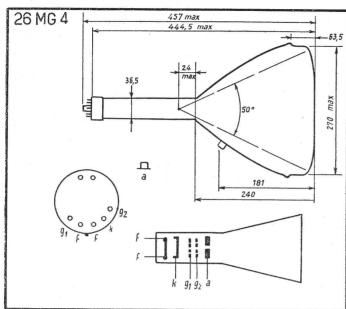

Dimensions de l'image — 145 × 195 mm

Bobine de concentration — 400 A/tours

CARACTERISTIQUES LIMITES

Tension maximum d'anode	7	kΥ
Tension maximum filament-cathode	100	٧
Résolution maximum	550	lignes

NOTES


Le 23 MA 4 est un tube à concentration et déviation électromagnétiques à structure triode et écran blanc, peu différent du modèle antérieur C 220 MW I.

Bien qu'il puisse être employé avec 4500 V de tension anodique, il est recommandé d'adopter une valeur de T.H.T. d'au moins 5000 V. Comme toujours, le choix de cette tension sera un compromis entre la brillance souhaitée et la puissance disponible pour le balayage.

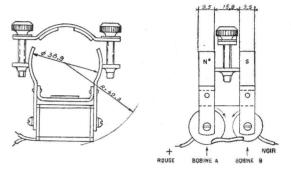
Une résistance de protection de 25 k Ω environ devra être prévue entre alimentation T.H.T. et anode du tube. D'autre part, il faudra ménager un enroulement séparé et bien isolé pour le chauffage du tube, et relier une extrémité du filament à la cathode.

Pour un réglage de la concentration tel que les lignes de l'image soient invisibles à une distance d'observation égale à 6 fois la hauteur de l'image, la concentration exige environ 400 ampères-tours. A ce moment, la distance entre le diaphragme du Wehnelt (grille) et le milieu de l'entrefer de la bobine sera approximativement de 40 mm (pour des bobines de concentration ayant des entrefers de l'ordre de 6 mm).

En rapprochant la bobine du culot du tube, le spot grossit et il faut fournir davantage d'ampèrestours ; les phénomènes inverses ont lieu si on éloigne la bobine. Quant aux bobines de déviation, elles doivent être montées aussi près que possible de l'épaulement du col.

CULOT Duodécal 7 broches CAPACITES Grille I Cathode Anode à revêtement ext. CARACTERISTIQUES D'UTILISATION

CARACTERISTIQUES D'U	TILISATION
Tension d'anode	9 kV
Tension de grille 2	250 V
Tension de grille I correspon-	
dant à l'extinction de	
l'image	—27 à —63 V
Dimensions de l'image	152 × 203 mm

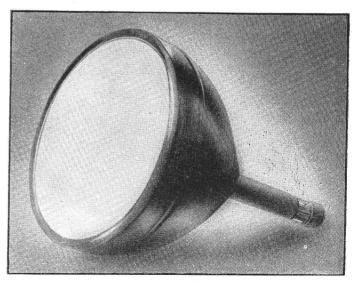

CARACTERISTIQUES LIMITES

		months de la company
	Tension minimum d'anode	8 kV
- 3	Tension maximum d'anode	10 kV
	Tension maximum de grille 2	410 V
	Tension de grille :	
	Tension positive de crête	+2 V
		0 à -125 V
	Tension maximum filament-ca-	
	thode	125 V
	Au moment de la mise sous	
	tension, pour moins de 15 se-	
	condes et si le filament est	
	négatif par rapport à la ca-	
	thode	410 V
	Résistance maximum dans la	
	grille I	1,5 M Ω

MAZDA

26 MG 4

TUBE ÉLECTROMAGNÉTIQUE DE 26 cm MUNI D'UN PIÈGE A IONS, POUR TÉLÉVISION



Piège à ions normalisé du type électromagnétique.

PIEGE A IONS ELECTROMAGNETIQUE

★ Le courant circulant dans le sens indiqué, la pièce polaire N doit attirer le pôle sud d'une boussole.

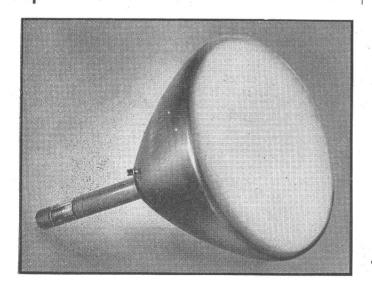
Les tubes Mazda de 26 et 31 cm sont livrés avec un piège à ions à aimant permanent.

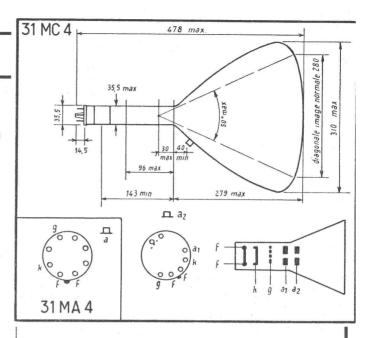
31MC4

TUBE ÉLECTROMAGNÉTIQUE DE 31 cm MUNI D'UN PIÈGE A IONS, POUR TÉLÉVISION

31 MR 4

TUBE ÉLECTROMAGNÉTIQUE DE 31 cm A ÉCRAN ALUMINISÉ ET PIÈGE A IONS, POUR TÉLÉVISION


31 MG 4


TUBE ÉLECTROMAGNÉTIQUE DE 31 cm A FOND PLAT ET PIÈGE A IONS, POUR TÉLÉVISION

31 MS 4

TUBE ÉLECTROMAGNÉTIQUE DE 31 cm A FOND PLAT, ÉCRAN ALUMINISÉ ET PIÈGE A IONS, POUR TÉLÉVISION

CULOT	CH	AUFFA	GE		
Duodécal 7 broches	6,3	V 0,8	5 A		
CAPACITES					
Grille			pΕ		
Cathode		2,500	pF pF		

CARACTERISTIQUES D'UTILISATION

Tension d'anode 2	9 kV
Tension d'anode I	250 V
Tension de modulation (crête)	12 V
Tension de grille I pour extinction	30 à
de l'image	—70 V
Courant dans le piège (1)	100 mA
Bobine de concentration	450 A/t.

(1) Pour un piège à ions tel que celui présenté page 16. D'autres caractéristiques sont possibles, à condition que soit maintenu le nombre des ampères-tours pour chaque bobine.

CARACTERISTIQUES LIMITES

Tension minimum d'anode 2	. 6	kV
Tension maximum d'anode 2	. 11	kV
Tension maximum d'anode I	400	٧
Tension minimum de grille I	. 0	٧
Tension maximum de grille I	. —200	V -
Tension maximum filament-cathod	e 150	٧
Résolution maximum	850	lignes

31 MA 4

(C 310 MW 1)

TUBE TRIODE DE REMPLACEMENT

Culot	voi	r dessin	ci-des	sus
Filament	* * * * * * * *	6,3 V	0,6	A
Tension normale d'a	node		5,5	kV
Tension maximum	d'anode		7	kV

MINIWATT-DARIO: TUBES ANCIENS

		I.	– Tu	bes à	con	centi	ation	et	à dé	viatio	on éle	ectros	tatiq	ues	
Гуре	Culot	V f (V)	l f (A)	D max.	L max.	V a3	V a2	V a1	V g (V)	N1 (mm/V)	N 2 (mm/V)	C g	Cd1 d'1 (pF)	Cd ₂ d' ₂	Notes
DG 3-1	1	6,3	0,65	35	125	_	250 500	60 150	- 35 - 35	0,20 0,16	0,10 0,08	7,5	1,8	2	(1)
DG 3-2	1	6,3	0,65	35	125		500 800	150 200	- 25 - 35	0,09 0,06	0,06 0,04	6,5	1,5	1	(1)
DB 7-1						time in a	Control of the second	**************************************	management (al. (d.)	The second second second second second				W 11 - 1 - 2 - 1 - 1 - 2 - 2 - 2 - 2 - 2	Bleu
DG 7-1	2	4	1	7 5	165	_	500 800	140 220	- 20 - 30	0,35 0,22	0,24	6	1	3	Vert
DN 7-1															V. persistant
DB 7-2															(1) Bleu
DG 7-2	1	4	1	75	165	_	500 800	140 220	- 20 - 30	0,35 0,22	0,24	6	1	3	(1) Vert
DN 7-2	- 400 Oct 100									A SECTION AND A				-	(1) V. persistant
DB 9-3															(1) Bleu
DG 9-3	3	4	1	100	350	_	1000	400	- 40	0,40	0,30	7,5	2,6	2,8	(1) Vert
DN 9-3					Transcatorio de la compansa de la co				_					į.	(1) V. persistant
DG 9-4	3	4	1	100	350	_	1000	400	- 40	0,40	0,30	7,5	2,6	2,8	Vert
DN 9-5	4	4	1	100	350	1000 5000	1000	280 310	- 40 - 50	0,38 0,18	0,32 0,15	7,5	1,5	2	(1) Post-accélér.
DG 16-1	5	4	1	165	460		1000 2000	200 400	- 20 - 35	0,54 0,27	0,40 0,20	10	1,5	2	Type courant
DG 16-2	6	4	1	165	460	_	1000 2000	200 400	- 20 - 35	0,54 0,27	0,40 0,20	6	2,5	3	The state of the s
DG 25-1	7	4	1	260	595	5000	1400	250	- 60	0,17	0,14	14	2,5	3	The state of the second control of the secon
DW 16-1	5	4	1	165	460		1000 2000	200 400	- 20 - 35	0,54 0,27	0,40 0,20	10	1,5	2	Télévision
DW 31-1	7	4	1	310	640	5000	1000	250	- 60	0,17	0,13	15	4	5	Télévision
DW 39-1	7	4	1	390	765	5000	1000	250	- 60	0,16	0,14	15	4	5	Télévision

(1) Les plaques de déviation d_2 et d'_2 sont prévues pour un montage asymétrique.

II. - Tubes à concentration et déviation électromagnétiques

Type	Culot	V f (V)	l f (A)	D max.	L max.	V a 2	V a 1 (V)	V g (V)	C g (pF)	
MW 22-1	8	4	1	223	360	5000 5000	125 250	- 50 - 100	13	
MW 22-5	8	6,3	0,65	231	376	5000 5000	125 250	- 50 - 100	12	
MW 22-7	9	6,3	0,6	7 221	27/	7000	160	- 25	,	
MW 22-14	9	6,3	0,3	231	376	7000	200	- 60	6	
MW 31-3	8	6,3	0,65	308	465	5000 5000	125 250	- 50 - 100	13	
MW 31-6	8	6,3	0,65	308	465	5000 5000	125 250	- 50 - 100	12	
MW 31-7	9	6,3	0,6	200		7000	400	- 50	0	
MW 31-14	9	6,3	0,3	308	465	7000	400	- 115	8	

Tous ces tubes, destinés à la télévision, ont un écran blanc. Pour la concentration, 500 à 700 ampères-tours sont nécessaires.

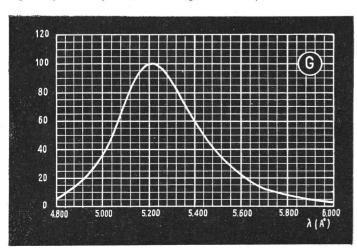
Notes

Les types DG 16-1 et MW 22-14 sont disponibles; les autres types sont cités pour information.

MINIWATT - DARIO

GÉNÉRALITÉS

Le code employé pour l'appellation des tubes à rayons cathodiques Miniwatt-Dario est le suivant :

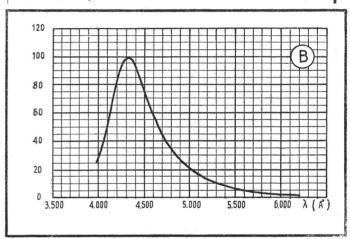

La première lettre est relative au mode de concentration et de déviation : D pour les tubes électrostatiques ; M pour les tubes électromagnétiques ;

La deuxième lettre indique la couleur de l'écran: B pour le bleu actinique, à préférer pour les oscilloscopes dont les images seront souvent photographiées; G (green = vert) pour le vert, couleur pour laquelle l'œil présente un maximum de sensibilité; W (white = blanc) pour le blanc, qui fournit les images les plus agréables en télévision; R (rémanent) indique une grande persistance, qui sera employée dans tous les cas où il est nécessaire que l'image ne s'efface que quelques secondes après le passage du spot (études de phénomènes transitoires, de spectres, radar, etc.); N désignait également, dans les types anciens, un écran persistant.

Le chiffre qui suit est l'indication, arrondie, du diamètre du tube exprimé en centimètres. On remarquera à ce propos que les tubes de 97 mm d'écran, dont le numéro était de la forme D-9 pour les types anciens, s'appelleront désormais, en versions perfectionnées : D-10, ce qui permettra de les reconnaître.

Le dernier chiffre de l'appellation est fixé arbitrairement et sert à différencier les types successifs de même diamètre.

Répartition spectrale de l'énergie lumineuse pour un écran G.



Exemples:

Le DG 7-5 est un tube de 7 cm à concentration et déviation électrostatiques, à écran vert, prévu pour attaque symétrique ;

Le DG 7-6 est un tube identique prévu pour attaque asymétrique ;

Le DB 10-2 est un tube de 10 cm, statique, à écran bleu:

Répartition spectrale de l'énergie lumineuse pour un écran B.

Le DR 10-6 est un tube de même diamètre, à écran rémanent et post-accélération;

Le MW 31-15 est un tube de 31 cm, à concentration et déviation électromagnétiques et écran blanc, pour télévision.

On verra plus loin à propos de ce tube qu'il est muni d'un piège à ions. Rappelons qu'il s'agit d'un dispositif — magnétique ou électromagnétique — destiné à dériver vers l'anode du canon électronique les ions négatifs, créés par les très hautes tensions nécessitées par les brillances et surfaces d'écrans maintenant réalisées, ions qui, sans ce « piège », iraient frapper l'écran, en oxyderaient la poudre luminescente et donneraient rapidement naissance à une tache fort gênante.

Pour terminer, on remarquera, parmi les nouveaux tubes pour oscillographie, la série des DB, DG et DR 13-2, dont les faibles capacités interélectrodes seront appréciées pour le fonctionnement aux fréquences élevées.

MINIWATT-DARIO

MW 6-2

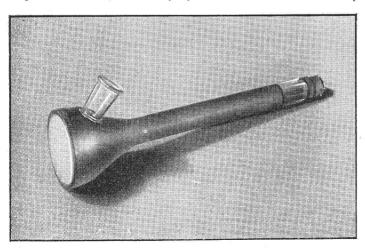
TUBE ÉLECTROMAGNÉTIQUE DE 6 cm POUR TÉLÉVISION PAR PROJECTION

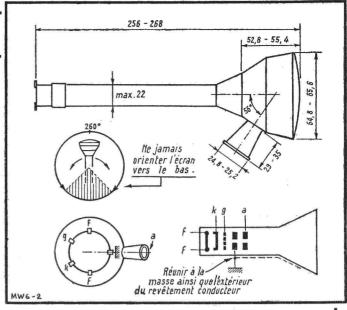
CULOT	CHAU	FFAGE	
Européen 5 broches	5,3 V	0,7 A	
CAPACITES			
Grille Cathode Anode à revêtement ext. (utilisée pour le filtrage de		10 pF 6,5 pF 450 pF	

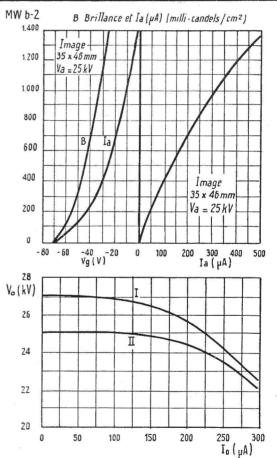
Tension d'anode	- 3	25 kV
Courant moyen d'anode	10	00 μA
Tension de grille	à	90 V
Tension de modulation		50 V

CARACTERISTIQUES D'UTILISATION

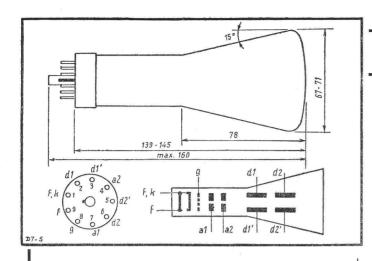
CARACTERISTIQUES LIMITES


Tension	maximum	d'anode	27	kΥ
		é max. d'anode		0.000
		de grille		
Tension	maximum	filament-cathode	100	٧


Pendant le temps de fonctionnement du dispositif de protection de l'écran en cas de défaillance des circuits de balayage :


		,	_				
Tension	maximum	de	grille		300	٧	
Tension	maximum	filar	ment-c	athode	250	V	

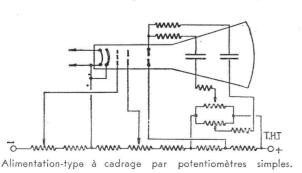
MW 6-4


Ce tube a les mêmes caractéristiques que le MW6-2, mais possède un fond plat et est destiné au dispositif de projection « Télécran ».

En haut : Brillance et courant de faisceau en fonction de la tension de grille ; brillance en fonction du courant de faisceau ; ci-dessus : tension de la source de T.H.T. en fonction du débit. A la tension nominale du réseau, pour une image de 14 cm² au moins et une vitesse minimum de spot de 450 m/s, la courbe de charge de l'alimentation ne doit pas dépasser la courbe I (courbe idéale en II).

MODE D'ATTAQUE

Les tubes de cette série ont leurs deux paires d'électrodes prévues pour une attaque symétrique.


CU	.OT		CHAU	IFFA(SE
Loctal 9	broches		6,3 V	0,4	A

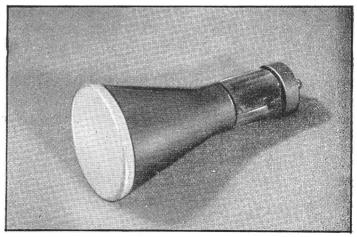
CAPACITES

Grille		8						٠	ě	٠	¥		•		×		9	pF
Plaque déviation d1		v			, in				21	¥	è	٠	¥				4,8	pF
Plaque déviation d'																	4,8	pF
Plaque déviation de					,												5	pF
Plaque déviation d'							٠	٠			8		ě				5,4	pF
Plaque d ₁ à plaque	ď;	Ĺ			14	•		×.		g.	al.	Ģ.	×			N.	0,6	pF
Plaque d ₂ à plaque																	8,0	pF
Plaques d ₁ d' ₁ à pl	pe	ue	es	•	d	20	1	2		ń	1	ı.	ė				0,1	pF

FINESSE

Epaisseur du trait mesurée sur un cercle de 50 mm de diamètre pour une tension d'anode 2 de 800 V et un courant de faisceau de 0,5 μΑ

MINIWATT-DARIO


DB7-5 · DG7-5 · DR7-5

TUBES ÉLECTROSTATIQUES DE 7 cm POUR OSCILLOGRAPHIE

CARACTERISTIQUES D'UTILISATION

Tension d'anode 2	800 V
Tension d'anode I	200 à 300 V
Tension de grille	0 à50 V
Courant d'anode 2	
Sensibilité plaques I	0,26 mm/V
Sensibilité plaques 2	0,16 mm/V

Tension minimum d'anode 2	800 V
Tension maximum d'anode 2	I 000 V
Tension maximum d'anode I	400 V
Tension minimum de grille	0 V
Tension maximum de grille	-100 V
Tension maximum de crête entre	
plaques I	450 V
Tension maximum de crête entre	
plaques 2	750 V
Dissipation maximum de l'écran.	3 mW/cm ²
Résistance maximum dans les pla-	
ques	5 MΩ
Résistance maximum dans la grille	0,5 M Ω
8	x &

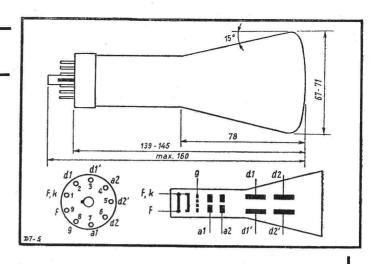
MINIWATT-DARIO

DB7-6 · DG7-6 · DR7-6

TUBES ÉLECTROSTATIQUES DE 7 cm POUR OSCILLOGRAPHIE

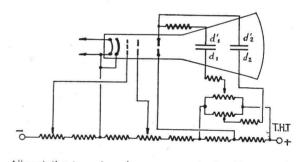
MODE D'ATTAQUE

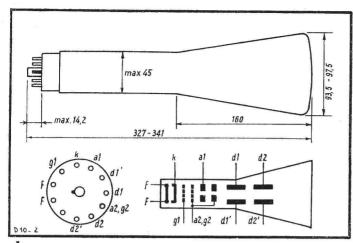
Les tubes de cette série ont leurs plaques d_1 et d'_1 prévues pour une attaque symétrique, et leurs plaques d_2 et d'_2 prévues pour une attaque asymétrique (d'_2 devant être connectée à a_2).


CULOT	CHAUFFAGE
Loctal 9 broches	6,3 V 0,4 A

CAPACITES

Grille							0.00		,					•	į,			į.	9	pF
Plaque déviation	d_1		•					•	ě		8		8	10	ě				4,8	pF
Plaque déviation	d'_1	N.	v						·	40	¥					×			4,8	pF
Plaque déviation	d_2						e e			2	*		9	40	3	×	ie.	*	5	pF
Plaque déviation	d'_2										81		ń		á		ı.	٠,	5,4	pF
Plaque d ₁ à plaq	ue c	1				8	7	8 1	٠		12	į.	v			•		8	0,6	pF
Plaque d ₂ à plaq																			8,0	pF
Plaques d ₁ d' ₁ à	pla	qu	ıe	S	•	d	20	1'	2			·						8	0,1	pF


FINESSE


CARACTERISTIQUES D'UTILISATION

Tension d'anode 2	800 V
Tension d'anode I	200 à 300 V
Tension de grille	0 à50 V
Courant d'anode 2	0 à 100 μA
Sensibilité plaques I	0,26 mm/V
Sensibilité plaques 2	0,16 mm/V

Alimentation-type à cadrage par potentiomètres simples.

Tension minimum d'anode 2	800 V
Tension maximum d'anode 2	I 000 V
Tension maximum d'anode I	400 V
Tension minimum de grille	0 V
Tension maximum de grille	100 V
Tension maximum de crête entre	
plaques I	450 V
Tension maximum de crête entre	
plaques 2	750 V
Dissipation maximum de l'écran.	3 mW/cm^2
Résistance maximum dans les pla-	2
ques	5 M Ω
Résistance maximum dans la grille	$0.5~\mathrm{M}\Omega$
,	

CULOT CHAUFFAGE Magnal II broches 6,3 V 0,3 A

Alimentation-type à cadrage par potentiomètres doubles.

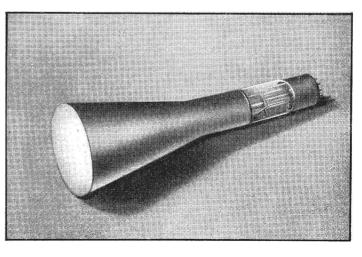
CAPACITES

Grille I	8 pF
Plaque déviation d ₁	5,8 pF
Plaque déviation d'1	5,8 pF
Plaque déviation d2	7,6 pF
Plaque déviation d'2	7,6 pF
Plaque d ₁ à plaque d' ₁	1,9 pF
Plaque d ₂ à plaque d' ₂	2,4 pF
Plaques d ₁ d' ₁ à plaques d ₂ d' ₂	0,35 pF

FINESSE

Epaisseur du trait mesurée sur un cercle de 50 mm de diamètre pour une tension d'anode 2 et de grille 2 de 2 000 V et un courant de faisceau de 0,5 μA... 0,4 mm

MINIWATT-DARIO

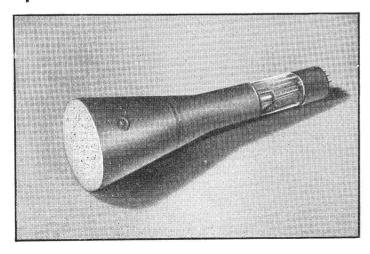

DB10-2 · DG10-2 DR10-2

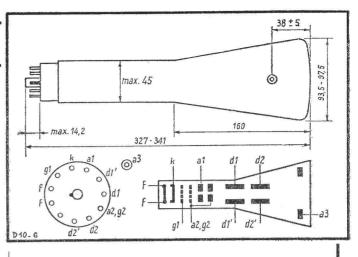
TUBES ÉLECTROSTATIQUES DE 10 cm POUR OSCILLOGRAPHIE

CARACTERISTIQUES D'UTILISATION

Tension d'anode et grille 2	2 000	٧
Tension d'anode I	400 à 720	٧
Tension de grille I	—45 à —100	٧
Courant d'anode 2	0 à 1200	μ A
Courant d'anode I	—15 à + 10	μΑ
Sensibilité plaques I		mm/V
Sensibilité plaques 2	0,23	mm/V

Tension maximum d'anode et	
grille 2	2 500 V
Dissipation maximum d'anode et	
grille 2	4 W
Tension maximum d'anode I	I 000 V
Tension minimum de grille 1	0 V
Tension maximum de grille I	—150 V
Tension maximum de crête entre	
plaques I	450 V
Tension maximum de crête entre	
plaques 2	450 V
Dissipation maximum de l'écran	3 mW/cm ²
Résistance maximum dans les pla-	,
ques	5 M Ω
Résistance maximum dans la	
grille I	1,5 M Ω

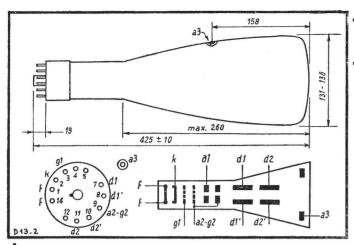



MINIWATT-DARIO

DB10-6 · DG10-6 DR10-6

TUBES ÉLECTROSTATIQUES DE 10 cm A POST-ACCÉLÉRATION POUR OSCILLOGRAPHIE

CULOT Magnal II broches		V 0,3 A
CAPACITES		
Grille I Plaque déviation d ₁ Plaque déviation d' ₁ Plaque déviation d ₂ Plaque déviation d' ₂ Plaque d ₁ à plaque d' ₁ Plaque d ₂ à plaque d' ₂ Plaques d ₁ d' ₁ à plaques d ₂ d' ₂		8 pF 5,8 pF 5,8 pF 7,6 pF 7,6 pF 1,9 pF 2,4 pF 0,35 pF
FINESSE		
Epaisseur du trait mesurée sur un c de 50 mm de diamètre : pour une tension d'anode 3 de 2 00 une tension d'anode 2 et de grille 2 000 V et un courant de faiscea 0,5 μA pour une tension d'anode 3 de 4 00 une tension d'anode 2 et de grille de 2 000 V et un courant de fais de 0,5 μA	00 V, 2 de u de 00 V, 2 de	0,4 mm 0,3 mm



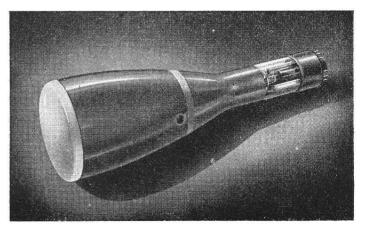
CARACTERISTIQUES	D'UTILISATION

Annual Control of the		
Sans post-accélération :		
Tension d'anode 3	2 000 V	
Tension d'anode et grille 2	2 000 V	
Tension d'anode I	400 à 720 V	
Tension de grille 1	-45 à -100 V	
Courant d'anode 2	0 à 1200 μA	
Courant d'anode I	$-15 \text{ à} + 10 \mu\text{A}$	
Sensibilité plaques I	0,3 mm/V	
Sensibilité plaques 2	0,23 mm/V	
Avec post-accélération: Tension d'anode 3 Tension d'anode et grille 2 Tension d'anode I Tension de grille I Courant d'anode 2 Courant d'anode I Sensibilité plaques I Sensibilité plaques 2	4 000 V 2 000 V 400 à 720 V -45 à -100 V 0 à 1 200 μA -15 à + 10 μA 0,25 mm/V 0,19 mm/V	

CARACTERISTIQUES LI	MILES
Tension maximum d'anode 3 Tension maximum d'anode et	5000 V .
grille 2	2 500 V •
Dissipation maximum d'anode et	
grille 2	4 W.
Tension maximum d'anode I	1 000 V .
Tension minimum de grille I	0 V •
Tension maximum de grille I	—150 V .
Tension maximum de crête entre	•
plaques I	450 V
Tension maximum de crête entre	
plaques 2	450 V
Dissipation maximum de l'écran	3 mW/cm ²
Résistance maximum dans les pla-	
ques	5 MΩ
Résistance maximum dans la	
grille I	1,5 ΜΩ
grillo i i i i i i i i i i i i i i i i i i	114 11

CULOT		ΑU	FFA	SE
Diheptal 14 broches	6,3	٧	0,3	Α
CAPACITES				
Grille I Cathode Plaque déviation d1 Plaque déviation d'1 Plaque déviation d2 Plaque déviation d2 Plaque déviation d'2 Plaque d2 à plaque d'1 Plaque d2 à plaque d'2 Plaques d1d'1 à plaques d2d'2 Plaques d1d'1d2d'2 à grille I Plaques d1d'1d2d'2 à cathode			5 7 8	pF pF pF pF
FINESSE				
Epaisseur du trait mesurée sur un c de 50 mm de diamètre : pour une tension d'anode 3 de 200 une tension d'anode 2 et de grille 2000 V et un courant de faiscea 0,5 μA pour une tension d'anode 3 de 400 une tension d'anode 2 et de grille de 2000 V et un courant de fais	00 V, 2 de u de 00 V, 2 de	C),4 m	nm
de 0,5 μA		(),3 n	nm

CARACTERISTIQUES D'UTILISATION


Sans post-accélération :	
Tension d'anode 3	2 000 V
Tension d'anode et grille 2	2 000 V
Tension d'anode I	400 à 690 V
Tension de grille 1	-45 à -100 V
Courant d'anode 2	0 à 1600 μA
Courant d'anode I	$-15 \text{ à} + 10 \mu\text{A}$
Sensibilité plaques I	0,45 mm/V
Sensibilité plaques 2	0,4 mm/V

MINIWATT-DARIO

DB13-2 · DG13-2 DR13-2

TUBES ÉLECTROSTATIQUES DE 13 cm A POST-ACCÉLÉRATION, POUR OSCILLOGRAPHIE

Avec post-accélération: Tension d'anode 3
CARACTERISTIQUES LIMITES
Tension maximum d'anode 3 5000 V
Tension maximum d'anode et grille 2 2 500 V
Dissipation maximum d'anode et
grille 2 4 W
Tension maximum d'anode I I 000 V
Tension minimum de grille I 0 V
Tension maximum de grille I — 150 V
Tension maximum de crête entre
plaques I 450 V
Tension maximum de crête entre
plaques 2
plaques 2
Dissipation maximum de l'écran 3 mW/cm² Résistance maximum dans les
- 110
plaques
Résistance maximum dans la
grille I

MINIWATT-DARIO

MW 31-15

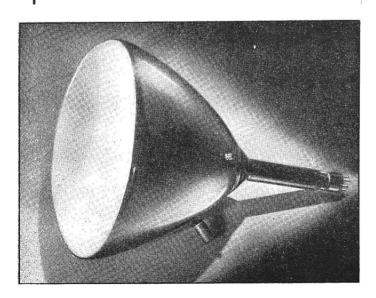
TUBE ÉLECTROMAGNÉTIQUE DE 31 cm MUNI D'UN PIÈGE A IONS, POUR TÉLÉVISION

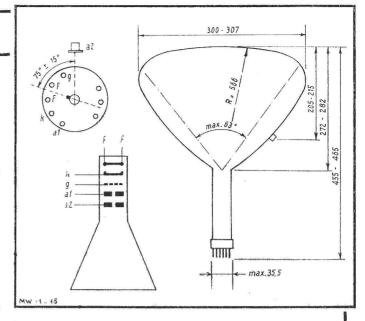
CULOT

Duodécal 8 broches dont 5 connectées

CHAUFFAGE

6,3 V 0,3 A


(voir notes ci-contre)


CARACTERISTIQUES D'UTILISATION

Tension	d'anode	2	 7	à	9	kV
Tension	d'anode	1	 160	à	200	V
Tension	de grille		 0 8	à -	-60	٧

CARACTERISTIQUES LIMITES

Tension	minimum	d'anode	2	6	kΥ
Tension	maximum	d'anode	2	11	k٧
Tension	maximum	d'anode	1	4^0	٧
Tension	minimum	de grille	6	0	V
Tension	maximum	de grille		200	٧
Tension	maximum	filament	-cathode	150	V

NOTES

Le MW 31-15 est un tube cathodique à concentration et déviation électromagnétiques aux caractéristiques géométriques et électriques sensiblement identiques à celles des modèles antérieurs : MW 31-7 et MW 31-14.

Il diffère toutefois de ces tubes par la construction de son canon, lequel est muni d'un piège à ions. Ce très intéressant dispositif, dont l'utilité et le principe ont été exposés dans la page « Généralités » Miniwatt-Dario, exige, pour donner entière satisfaction, le respect de quelques précautions simples :

La partie du piège qui est extérieure au tube comporte un aimant permanent, dont le champ a été ajusté en usine à sa valeur optimum. En conséquence, on évitera de poser cet aimant à proximité de pièces en métaux ferreux et on épargnera la présence de tout champ magnétique intense. La flèche placée sur l'aimant doit être dirigée vers le téton a2 (ce dernier, par ailleurs, devant être orienté vers le haut). La position de l'aimant varie avec la valeur de la T.H.T.; pour 8 kV, la distance du bord du culot au bord de l'aimant est d'environ II mm. La position optimum de l'aimant est celle qui correspond au maximum de lumière sur l'écran. De préférence, effectuer le réglage sur un parasite pour éviter le risque d'un faisceau trop intense.

Le circuit de chauffage du MW 31-15 appelle également une remarque : lorsque l'alimentation des filaments s'effectue en série, la tension aux bornes du tube ne doit pas dépasser 8,5 V à la mise en service. Le cas échéant, utiliser un limiteur de courant (résistance à coefficient de température négatif).

VISSEAUX

PROCÉDÉS SYLVANIA

GÉNÉRALITÉS

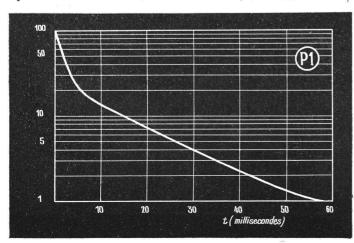
Les tubes cathodiques Visseaux sont marqués au code américain, que nous allons rappeler :

Le premier chiffre indique la valeur arrondie du diamètre mesuré en pouces (1 pouce = 25,4 mm);

Le symbole suivant est une lettre choisie arbitrairement pour différencier, au point de vue des natures et fonctions, les tubes de même diamètre :

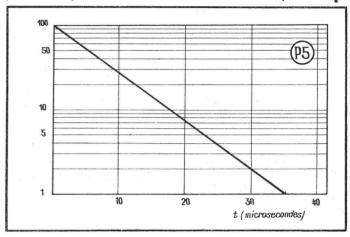
Enfin, vient la lettre P (par laquelle il est possible, en lisant l'appellation d'un tube inconnu, de reconnaître si c'est un tube cathodique) suivie d'un nombre de un ou deux chiffres et caractéristique des poudres luminescentes rècouvrant l'écran (phosphor, en anglais, d'où la signification de la lettre P).

Parfois, séparée par un tiret, se rencontre encore une des lettres A, B, C... à la fin du numéro du tube. Ces suffixes désignent des versions successives d'un même type.


Il reste à définir les caractéristiques des différents écrans :

Un écran P-I produit une trace brillante, verte, de persistance moyenne, et qui convient particulièrement à l'observation visuelle de phénomènes périodiques.

L'écran P-4 est celui qui procure une image blanche, de persistance moyenne, telle que celle qui est exigée pour les réceptions de télévision.


L'écran P-5 correspond à une trace bleue très actinique et à persistance très brève. Il sera utilisé pour les tubes destinés à l'enregistrement pho-

Luminosité rémanente, en fonction du temps, d'un écran P-1.

tographique des oscillogrammes, aussi bien par les méthodes classiques que par celles des films tournants, même aux grandes vitesses.

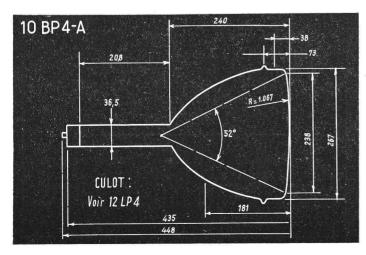
L'écran P-7 est à grande rémanence et double effet : pendant le bombardement électronique, la

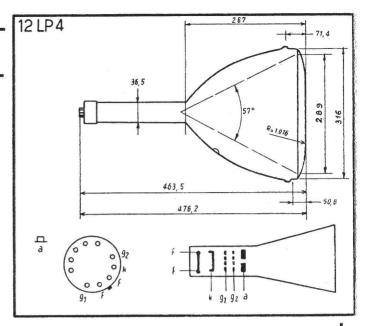
Luminosité rémanente, en fonction du temps, d'un écran P-5.

trace est bleuâtre et à faible persistance ; après l'excitation, il subsiste une phosphorescence jauneverdâtre qui dure plusieurs minutes. Applications : observation de phénomènes à très basse fréquence ou non périodiques.

L'écran P-II crée un spot bleu actinique de persistance suffisamment faible pour permettre l'enregistrement par film mobile, mais trop élevée cependant pour la photographie aux grandes vitesses ; de forte brillance, le P-II permet également l'observation visuelle.

L'écran P-15 donne une trace à très courte persistance présentant deux bandes d'émission ; une dans le bleu-vert ; l'autre dans le proche ultraviolet, cette dernière moins persistante, d'où applications spéciales possibles.

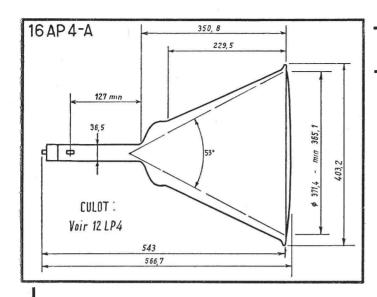

Les écrans des tubes des différentes marques ayant des caractéristiques voisines, les courbes des pages 9, 19 et 27 peuvent être considérées comme représentant des valeurs moyennes applicables aux tubes de toutes provenances.


VISSEAUX

10 BP 4-A

TUBE ÉLECTROMAGNÉTIQUE DE 26 cm MUNI D'UN PIÈGE A IONS, POUR TÉLÉVISION

CULOT	CHAUFFAGE
Duodécal 5 broches	6,3 V 0,6 A
CAPACITES	
Grille I Cathode Anode à revêtement ext.	6 pF 5 pF 500 à 2000 pF
CARACTERISTIQUES D'UTIL	ISATION
Tension d'anode	9 à 11 kV 250 V —27 à —63 V
CARACTERISTIQUES LII	MITES
Tension maximum d'anode Dissipation anodique maximum	12 kV 6 W 410 V
Tension maximum de grille 2 Tension de grille 1 :	410 V
Tension positive de crête Polarisation	+2 V 0 à125 V
Tension maximum filament-ca-	
thode	150 V
(à froid, filament négatif) Résistance maximum dans la	410 V
grille I	1,5 M Ω



12 LP 4

TUBE ÉLECTROMAGNÉTIQUE DE 31 cm MUNI D'UN PIÈGE A IONS,

CULOT	CHAUFFAGE
Duodécal 5 broches	6,3 V 0,6 A
CAPACITES	
Grille I Cathode Anode à revêtement ext.	6 pF 5 pF 750 à 2000 pF
CARACTERISTIQUES D'UT	ILISATION
Tension d'anode	9 à 11 kV 250 V
tinction du spot	
CARACTERISTIQUES LI	MITES
Tension maximum d'anode	12 kV
Dissipation anodique maximum	6 W
Dissipation anodique maximum Tension maximum de grille 2	A1000 A1100
Dissipation anodique maximum Tension maximum de grille 2 Tension de grille I :	6 W
Dissipation anodique maximum Tension maximum de grille 2	6 W 410 V
Dissipation anodique maximum Tension maximum de grille 2 Tension de grille 1 : Tension positive de crête	6 W 410 V +2 V
Dissipation anodique maximum Tension maximum de grille 2 Tension de grille I: Tension positive de crête Polarisation Tension maximum filament-cathode	6 W 410 V +2 V 0 à -125 V
Dissipation anodique maximum Tension maximum de grille 2 Tension de grille I: Tension positive de crête Polarisation Tension maximum filament-ca-	6 W 410 V +2 V 0 à —125 V

16 AP 4-A

TUBE ÉLECTROMAGNÉTIQUE DE 40 cm A CONE EN MÉTAL ET PIÈGE A IONS, POUR TÉLÉVISION

CULOT	CHAUFFAGE
Duodécal 5 broches	6,3 V 0,6 A
CAPACITES	
Grille I	
CARACTERISTIQUES D'UTIL	ISATION
Tension d'anode	9 à 12 kV 300 V
l'extinction du spot	—27 à —63 V
CARACTERISTIQUES LIN	MITES
Tension maximum d'anode	14 kV
Dissipation anodique maximum	6 W
Tension maximum de grille 2 Tension de grille 1 :	410 V

Tension positive de crête ...

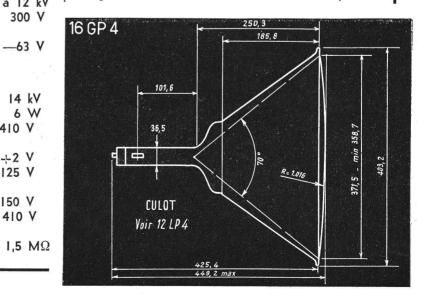
thode

(à froid, filament négatif)

Résistance maximum dans la grille I -- 2 V

150 V

410 V

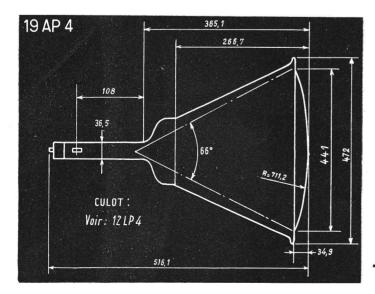

0 à -125 V

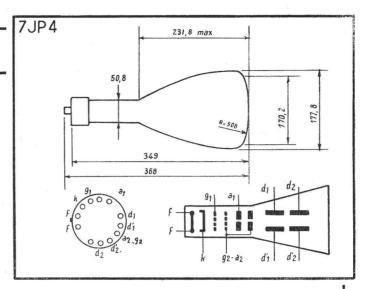
VISSEAUX

16 GP 4

TUBE ÉLECTROMAGNÉTIQUE DE 40 cm A CONE EN MÉTAL ET PIÈGE A IONS. POUR TÉLÉVISION

CULOT	CHAUFFAGE
Duodécal 5 broches	6,3 V 0,6 A
CAPACITES	*
Grille I Cathode	
CARACTERISTIQUES D'UTIL	ISATION
Tension d'anode	12 kV 300 V
l'extinction du spot	—33 à —77 V
CARACTERISTIQUES LIN	MITES
Tension maximum d'anode	14 kV
Dissipation anodique maximum	6 W
Tension maximum de grille 2 Tension de grille 1 :	410 V
Tension positive de crête	+2 V
	0 à 125 V
Tension maximum filament-ca-	
thode	150 V
(à froid, filament négatif) Résistance maximum dans la	410 V
grille I	1,5 M Ω

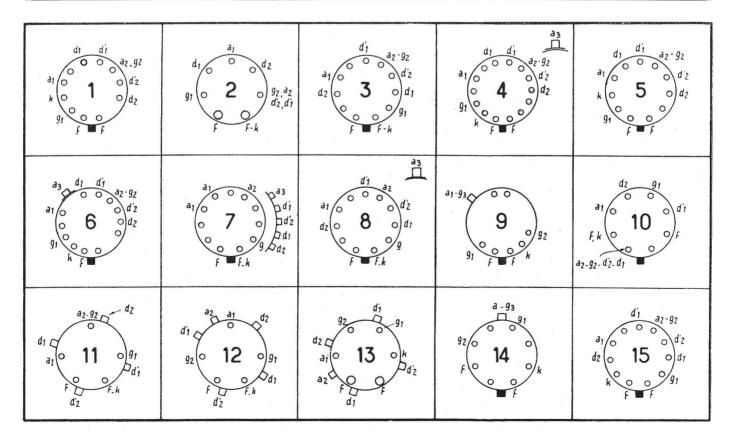



VISSEAUX

19 AP 4-B

TUBE ÉLECTROMAGNÉTIQUE DE 47 cm A CONE EN MÉTAL ET PIÈGE A IONS, POUR TÉLÉVISION

CULOT	CHAUFFAGE
Duodécal 5 broches	6,3 V 0,6 A
CAPACITES	
Grille I Cathode	the second secon
CARACTERISTIQUES D'U	TILISATION
Tension d'anode Tension de grille 2 Tension de grille ! pour	12 à 14 kV 300 V
l'extinction du spot	—33 à —77 V
CARACTERISTIQUES	LIMITES
Tension maximum d'anode Dissipation anodique maximum Tension maximum de grille 2 Tension de grille 1:	19 kV 6 W 410 V
Tension positive de crête Polarisation Tension maximum filament-ca-	+2 V 0 à125 V
thode (à froid, filament négatif) Résistance maximum dans la	150 V 410 V
grille I	1, 5 ΜΩ


7 JP 4

TUBE ÉLECTROSTATIQUE DE 18 cm POUR OSCILLOGRAPHIE

CULOT	CHAUFFAGE
Diheptal 12 broches	6,3 V 0,6 A
CAPACITES	
Grille I Cathode Plaque déviation d1 ou d'1 Plaque déviation d2 ou d'2 Plaque d1 à plaque d'1 Plaque d2 à plaque d'2	9,5 pF 8 pF 11 pF 2 pF
CARACTERISTIQUES D'U	TILISATION
Tension de blocage grille I	6 000 V 20 à 2 400 V 72 à —168 V 0,17 à 0,14 mm/V 0,14 à 0,1 mm/V
CARACTERISTIQUES	LIMITES
Tension maximum d'anode 2 Tension maximum d'anode I Tension de grille I : Tension positive de crête	2 800 V +2 V
Polarisation Tension maximum entre anode 2	et
une plaque quelconque de c viation Tension maximum filament-catho (à froid, filament négatif)	750 V de 125 V

TUBES CATHODIQUES U.S.A.

Туре	Culot	V _f (V)	If (A)	Diam.	V _{a3} (V)	V _{a2} (V)	V _{a1} (V)	V _g (V)	N ₁ (mm∫V)	N2 (^{mm} /V)	Notes
2API/IA	15	6,3	0,6	52		1 000	250	60	0,13	0,11	Statique
2BP1	1	6,3	0,6	52		2 000	560	— I35	0,12	0,08	Statique
3API/IA	2	2,5	2,1	76		1 500	430	- 50	0,23	0,22	Statique
3GPI	3	6,3	0,6	76		I 500	350	50	0,36	0,32	Statique
3JP1	4	6,3	0,6	76	4 000	2 000	690	90	0,14	0,11	Statique
3KPI	5	6,3	0,6	76		2 000	600	90	0,25	0,17	Statique
3RPI	1	6,3	0,6	76		2 000	600	— I35	0,10	0,12	Statique
5BPI/IA	3	6,3	0,6	127		2 000	450	— 40	0,66	0,60	Statique
5CPI/IA	6	6,3	0,6	127	4 000	2 000	575	60	0,32	0,28	Statique
5JPI/IA	7	6,3	0,6	127	4 000	2 000	520	75	0,28	0,24	Statique
5LPI	8	6,3	0,6	127	4 000	2 000	500	— 60	0,28	0,25	Statique
5UPI	5	6,3	0,6	127		2 000	640	— 90	0,40	0,33	Statique
IOKP7	9	6,3	0,6	254			9 000	63			Magn. Vg2 = 250 V
12DP7A	14	6,3	0,6	305			7.700			7	Magnétique
902A	10	6,3	0,6	51		600	150	— 60	0,21	0,18	Statique
905A	11	2,5	2,1	127		2 000	450	— 35	0,26	0,22	Statique
908A	2	2,5	2,1	76		1 500	430	50	0,23	0,22	Statique
912	12	2,5	2,1	127		15 000	3 000		0,034	0,028	Stat. Vg2 = 250 V
913	10	6,3	0,6	30		500	100	63	0,1	0,07	Statique
914A	13	2,5	2,1	229		7 000	1 550	50	0,1	0,08	Stat. Vg2 = 250 V

TABLE DES MATIÈRES

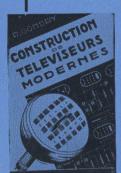
SOMMAIRE

TABLE ALPHABÉTIQUE

Introduction	1 2
C.D.C. — S.F.R. Généralités MT 125 et MT 125 A MT 336 A et anciens tubes C.D.C. OE 407 et OE 407 PA OE 411 et OE 411 PA OE 418 et OE 418 PA	3 4 5 6 7 8
## Comparison of	9 10 11 12 13 14 15 16
MINIWATT-DARIO Tubes anciens Généralités MW 6-2 DB, DG, DR 7-5 DB, DG, DR 7-6 DB, DG, DR 10-2 DB, DG, DR 10-6 DB, DG, DR 13-2 MW 31-15	18 19 20 21 22 23 24 25 26
VISSEAUX Généralités 10 BP 4-A et 12 LP 4 16 AP 4-A et 16 GP 4 19 AP 4-B et 7 JP 4 Tubes cathodiques U.S.A.	27 28 29 30 31

MW 31-3 18 912 31 MW 31-7 18 913 31 MW 31-14 18 914-A 31
--

TABLE DES MATIÈRES DES PRÉCÉDENTS **ALBUMS** 1 2 4 6 AU 6 6 BA 6 6 BE 6 6 J 4 6 X 4 12 AT 4 12 AU 6 12 BA 6 12 BE 6 35 W 4 50 B 5 117 Z 3 EB4 EBC 3 5 Y 3 6 J 5 AZ 41 EL 41 6 A 8 6 AF 6 6 J 7 6 K 7 EAF 41 **EL 42** EBF 2 EBL I 6 AF 7 6 B 8 6 C 5 6 C 8 6 K 8 6 L 5 6 L 6 EBC 41 **EZ 40** ECH 3 EB 40 **GZ 40** EF 6 EF 8 EF 9 EL 2 EB 41 UAF 41 6 L 7 6 M 7 6 N 7 6 R 7 6 S 7 6 U 7 ECC 40 UBC 41 6 E 8 6 F 5 6 F 6 6 F 8 UCH 41 ECH 41 EL 3 EL 5 ECH 42 UCH 42 EL 6 UF 41 EC 41 6 G 6 6 H 6 EM I EF. 40 UL 41 1654 EM 4 9 001 EF 41 UY 41 6 V 6 6 X 5 1882 6 H 8 9 002 1883 6 J 5 **EF 42 UY 42** 9 003


Pour vous que la technique intéresse

QUELQUES OUVRAGES

CONSTRUCTION DES TÉLÉVISEURS MODERNES

par R. GONDRY

Principes de fonctionnement,

étude et réalisation détaillée de récepteurs à moyenne définition pour tubes de 7, 9, 22, 31 cm.

> 72 pages (16 X 24) 240 fr.

PRINCIPES DE L'OSCILLOGRAPHE CATHODIQUE

par R. ASCHEN et R. GONDRY Toutes les notions indispensables. 88 pages (13X21). . 150 fr.

RÉALISATION DE L'OSCILLOGRAPHE CATHODIOUE

par R. GONDRY

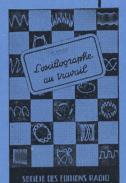
Calcul, construction et réglage des oscillographes spécialisés ou non; circuits auxiliaires; types industriels.

176 pages (13X21) . 300 fr.

L'OSCILLOGRAPHE AU TRAVAIL

par F. HAAS

Une véritable "clef" de tous


les oscillogrammes, accompagnée d'un exposé des méthodes de ces mesures spéciales.

spéciales.

225 photos
de courbes

224 pages (13X21)

540 fr.

3 REVUES DE CLASSE

Toute l'actualité des techniques électroniques et radio

Le journal favori des

constructeurs et dépanneurs

Pour les techniciens des images et des hyperfréquences

SPÉCIMEN RÉCENT DES REVUES CONTRE 130 FR. (100 fr. pour Radio-Constructeur)

SOCIÉTÉ DES ÉDITIONS RADIO

9, rue Jacob, PARIS-6° ODE. 13-65 - C.C.P. Paris 1164-34

