

Dans ce numéro

- Construisons nos appareils de mesure : un compteur fréquencemètre, le TFX1.
- Le BIGSTON BSD200, lecteur-enregistreur de cassettes stéréo.
- Le contrôleur universel Multitest CM1P. Radio contrôle.
- Le tuner FM Centaure.
- L'autoradio RK59 FM Radiomatic.
- L'allumage électronique.
- Le lecteur de cartouches Clarion PE424.
- Un détecteur de proximité.
- Un flash triple de studio.
- L'amplificateur Schneider Audio 8008.
- L'amplificateur SABA HiFi Studio.
- Le récepteur de radiocommande UK345.
- L'émetteur 144 MHz NT17C Sefrac.
- Le radiotéléphone SJ2.

Voir sommaire détaillé page 106

358 PAGES

Journal hebdomadaire

Fondateur:

J.-G. POINCIGNON

Directeur de la publication A. LAMER

Directeur:

Henri FIGHIERA

Rédacteur en Chef:

André JOLY

Comité de rédaction : Bernard FIGHIERA Charles OLIVERES

Direction-Rédaction: 2 à 12, rue Bellevue 75019 PARIS

C.C.P. Paris 424-19

ABONNEMENT D'UN AN

15 numéros **HAUT-PARLEUR**, dont 3 numéros spécialisés : Haut-Parleur Radio et Télévision
Haut-Parleur Electrophones Magnéto-

Haut-Parleur Radiocommande
12 numeros HAUT-PARLEUR « Radio Télévision Pratique »
11 numeros HAUT-PARLEUR « Electronique Professionnelle - Procédés

Electroniques »
11 numeros HAUT-PARLEUR « Hi-Fi

FRANCE80 F

ÉTRANGER120 F

ATTENTION ! Si vous êtes déjà abonné, vous faciliterez notre tâche en joignant à votre réglement soit l'une de vos dernières bandes adresses, soit le relevé des indications qui y figurent.

★ Pour tout changement d'adresse joindre 1 F et la dernière bande.

SOCIÉTÉ DES PUBLICATIONS RADIO-ÉLECTRIQUES ET SCIENTIFIQUES Société anonyme au capital de 120 000 F 2 à 12, rue Bellevue 75019 PARIS 202-58-30

SOMMAIRE

reils de mesure : un	
compteur fréquenceme-	
tre, le TFX1	107
• Circuits de percussion	107
pour instruments élec-	
troniques de musique	114
• Les régulateurs de ten-	
sion	120
sion • Le Bigston BSD200,	
lecteur/enregistreur de	
cassettes stéréo	123
 Le contrôleur universel 	
Multitest CM1P Radio-	
Contrôle	126
 Mesures en télévision : 	
aperçu géneral sur les	
mesures à effectuer	128
 Le tuner FM Centaure . 	133
 L'autoradio RK59 FM 	
Radiomatic	137
 L'allumage électronique 	141
 Stéréophonie à quatre canaux : le lecteur de 	
canaux : le lecteur de	
cartouches Clarion PE	1.45
• L'électronique au XII°	145
• L'electronique au XII	
Salon de la navigation	140
de plaisance • Un détecteur de proxi-	148
mitá	150
mité Schnei-	150
der Audio 8008	153
• La chaîne stéréo Har-	155
monie	158
• Les lasers chimiques	161
• Progrès et transforma-	
tion des systèmes d'en-	
traînement du magné-	
tophone	165
 Modules Scientelec en 	
kit	170

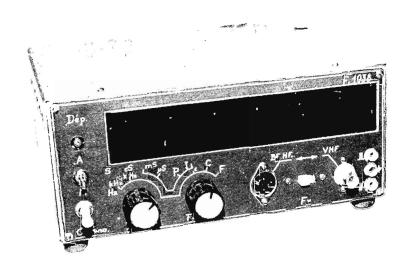
 Relais acoustique simple 	173
Flash triple de studioInformation et informa-	174
tique • Un téléviseur noir et	178
 blanc a tube de 110° Commutateurs contacteurs et programmateurs pour usages mul- 	181
tiples • A.B.C. : la transforma-	186
tion des signaux • Un équipement radio	208
en monocanal • Le recepteur de radio-	213
 commande UK345 L'amplificateur stéréo- phonique 2 × 25 W 	216
RIM RST2001 L'amplificateur Saba	223
Hi-Fi Studio	231
 L'amplificateur La- fayette LA375 La chaîne stéréo Dual 	237
HS38 L'audio stéréo cassette	241
Taïwan	243
• Selection d'appareils Hi-Fi	246
 Photo ciné: la mise au point automatique des caméras de cinéma Un gadget électronique: pour allumer frapper 	250
7 fois	254
 Courrier technique 	257
Nouveautés	259
 L'émetteur 144 MHz 	
NT17C Sefrac	261
 Le radiotéléphone SJ2 	265
 Petites annonces 	270

Commission Paritaire N° 23 643

PUBLICITÉ

Pour la publicité et les petites annonces s'adresser à la

SOCIÉTÉ AUXILIAIRE DE PUBLICITÉ


43, rue de Dunkerque, 75010 Paris Tél.: 285-04-46 (lignes groupées) C.C.P. Paris 3793-60

CONSTRUISONS NOS APPAREILS DE MESURE

UN COMPTEUR FREQUENCEMETRE

LE TFX 1

OUS avons le plaisir de commencer aujourd'hui une serie d'articles traitant de la fabrication d'appareils de mesures variés.

Nos projets sont nombreux : fréquencemètres, générateurs divers, oscilloscopes, etc.

Comme nous en avons l'habitude, nous présenterons des descriptions très élaborées, tant sur le plan théorique que sur le plan pratique. Nous savons trop en effet, pour en avoir souffert, qu'une description succincte est inexploitable par un amateur moyen, lequel a besoin, non d'un vague schema de principe, mais bien de plans precis et d'indications détaillées. C'est ce que nous fournirons.

Par ailleurs, et dans la mesure où les réalisateurs respecteront scrupuleusement nos indications, nous garantissons le fonctionnement des montages terminés : les appareils decrits ont été effectivement réalisés par l'auteur, longuement expérimentés et ils seront toujours authentifiés par de nombreuses photographies.

Il est évident que nous ne promettrons pas des performances égales à celles des meilleurs appareils du commerce : nous n'avons pas les moyens d'y parvenir. Mais nous savons bien, pour le ressentir nous-même, qu'un véritable amateur préfèrera toujours un appareil relativement modeste qu'il a construit, à une merveille technique achetée toute faite (... et à quel prix !)

Nous terminerons ce petit préambule comme nous le faisons souvent : c'est-à-dire par une mise en garde. Certaines descriptions sont des montages complexes exigeant un investissement assez important. Leur montage ne doit être envisagé qu'avec prudence et seulement si l'on remplit les conditions nécessaires :

Bonne expérience des montages électroniques.

- Moyens de mesure et de contrôle suffisants.

En effet trop d'amateurs se figurent qu'il suffit de réunir les composants (ce qui est déjà une certaine performance!) et de les assembler pour que « ça marche ». Il n'en est généralement rien. Le plus souvent, une erreur, un oubli, une pièce défectueuse, font que le fonctionnement escompté ne se produit pas. Et c'est le découragement, amenant fréquemment l'abandon.

Il faut avouer que la pratique de l'électronique, pour passionnante qu'elle soit, est très souvent décevante, surtout au début. Ce n'est qu'après de longues années d'expériences bonnes et mauvaises, qu'un amateur arrive à dominer sa matière et à obtenir régulièrement des résultats positifs.

Par consequent, si vous ne voulez perdre, ni temps, ni argent avant d'entreprendre un montage, il faut l'étudier à fond. Nous fournirons pour cela toutes les explications théoriques nécessaires. Il faut aussi penser à toutes les difficultes de mise au point et

voir si l'on dispose à la fois du savoir et de l'outillage de base, indispensables pour se sortir du mauvais pas éventuel.

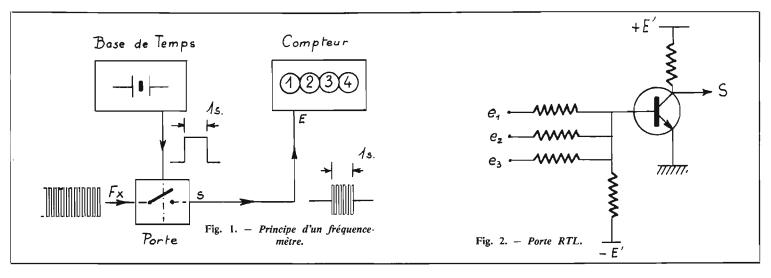
En la matière, il faut avoir la sagesse de ne pas présumer de ses possibilités.

Mais trêve de discours : passons aux choses sérieuses, c'est-à-dire à la description du premier appareil proposé.

Il s'agit d'un tréquencemètre numérique. Cet appareil aussi passionnant a realiser qu'à utiliser est une belle application des circuits intégrés logiques. Bien que complexe, la réalisation est en fait très facile et nécessite peu d'auxiliaires de contrôle : un contrôleur universel peut suffire. On y ajoutera un petit générateur de signaux rectangulaires et éventuellement un oscilloscope simple. C'est donc un appareil particulierement intéressant pour démarrer l'équipement d'un petit laboratoire d'amateur, d'autant qu'il permettra par la suite d'autres realisations avec une facilité dérisoire. (Nous pensons en particulier à l'étalonnage des générateurs HF et BF!)

UN COMPTEUR-FREQUENCEMETRE LE TFX1

Depuis des années, après avoir passé des heures et des heures à étalonner, le moins mal possible, les quelques générateurs que nous avons fabrique, nous rêvions d'un appareil merveilleux qui nous permettrait de réaliser cette opération en quelques minutes et avec une précision 1 000 fois plus grande!


Et pendant longtemps, ce rêve resta chimérique! Mais l'évolu tion technique ultra-rapide de ces dernières années, avec l'apparition de ces extraordinaires Circuits Intégrés nous le rend main tenant possible... à un prix raisonnable. Il n'en tallait pas plus pour nous décider, pour realiser l'appareil, et... pour vous le proposer!

CARACTERISTIQUES GENERALES DU TFX1

- Compteur à 6 chiffres.
- Affichage mémorisé.
- Virgule automatique.
- Voyant de dépassement automatique.
 - 4 tonctions principales.

1º Fréquencemetre : de 20 Hz à plus de 200 MHz

- 4 gammes de mesure.
- Entrées à impédance moyenne, sensibilité de l'ordre de 100 mV en BF et HF.
- Entrée BF et HF à haute impédance avec une sensibilite meilleure que 50 mV en BF (par sonde).
- Mesure repétitive.
- 2º Périodemètre (simple) :
 - de 1 µs à plusieurs secondes.
 - Mêmes entrées + entrée à liaison continue pour phénomènes très lents.
 - Mesure répétitive.

4º Impulsiomètre:

Impulsions positives en liaison continue, de 1 us à un nombre quelconque de secondes. (Sans limitation de durée)..

Impulsions négatives en liaison capacitive, de l μs à l s.

Mesure répétitive.

4º Chronomètre:

- En s, en 1/100 s, en 1/1000 s, en μ s.

Déclenchement manuel ou électrique extérieur.

Nombreuses variantes de commande.

Remise à zéro manuelle ou automatique selon les modes.

2 fonctions annexes.

Compteur simple: par branchement interne très simple.

Standard de fréquences : fournissant 10 MHz, 5 MHz. 1 MHz, 0,5 MHz, 0,1 MHz et jusqu'à 1 Hz si nécessaire.

Base de temps:

à quartz de 10 MHz non thermostaté.

- Precision movenne mesures: 1×10^{-5} .

Constitution:

 43 circuits intégrés TTL, série 74.

I circuit intégré ECL, haute vitesse.

10 transistors.

- 7 diodes et 2 zeners, 1 pont redresseur.

Alimentation: 110 V/220 V, 20 W. Dimensions: $210 \times 150 \times 85$ mm. Poids:

I. GENESE DE LA MAQUETTE

Au départ nous voulions réaliser un fréquencemètre...

Le principe de cet appareil est très simple. Voir la figure 1.

1° Rappel

2 kg.

Définition de la fréquence : La fréquence d'un signal électrique périodique est le nombre d'oscillations complètes (périodes) effectuées en une seconde.

Le signal dont on veut déterminer la fréquence se présente à l'entrée d'une « porte », normale-ment fermée. L'ouverture de la porte est commandée par une base de temps et se fait, dans le cas le plus simple, pendant I seconde, très précisément. Pendant cette seconde, le signal traverse la porte et se retrouve à la sortie S, appliqué à un compteur rapide, capable de dénombrer très exactement le nombre de périodes atteignant son entrée E.

La porte refermée, le compteur s'arrête et affiche le résultat, lequel est la valeur en Hertz de la fréquence, puisque la durée du comptage fut de 1 seconde.

Le fréquencemètre comprendra donc 4 sections bien distinctes:

1º Un compteur rapide, affichant le résultat en clair, avec un certain nombre de chiffres.

2º Une base de temps délivrant, à partir d'un quartz aussi stable que possible, des intervalles de temps bien définis.

3º Une porte et les circuits annexes, en commandant l'ouverture et la fermeture.

4º Des étages d'entrée amenant le signal à compter jusqu'à la porte.

Nous aurions pu en rester là, et c'est ce qui se passe dans le cas d'un fréquencemètre simple. (Ce sera ainsi avec le TFX2, que nous décrirons plus tard). Mais nous avons pensé que, étant donnée la somme déjà investie pour obtenir ce résultat, il fallait tirer le maximum du matériel.

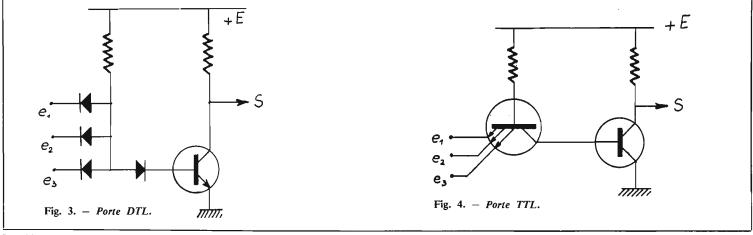
Un jeu de commutation va donc nous autoriser des fonctions supplémentaires et cela sans augmentation sensible du prix de revient.

A. Fonction périodemètre : très utile dans le cas des signaux a frequence basse, pour lesquels l'affichage donne peu de chiffres significatifs: ex. 50 Hz (2 chiffres)

correspondant à une période de 20 000 μ S (5 chiffres).

B. Fonction impulsiomètre: appelée ainsi, car elle nous permet de mesurer très exactement les durées d'impulsions, aussi bien quelle que soit la recurrence. Voilà donc une application, qu'apprécieront particulièrement les amateurs travaillant sur des circuits impulsionnels: ensembles de radiocommande digitale, par ex. ou générateurs de signaux pour mires ou caméras de télévision.

C. Fonction chronomètre : permettant des mesures de temps très précises (expériences de physique, par ex.).


Nous allons étudier successivement ces questions, en les faisant précéder des notions théoriques nécessaires à la bonne compréhension des schémas.

II. ETUDE THEORIQUE

1º Rappels sur les circuits intégrés logiques.

L'évolution rapide de la technique fait que nous en sommes à la quatrième génération de circuits intégrés.

Sont apparus successivement: - Les circuits RTL (résistance, transistor, logique). - Ces circuits étaient donc à base de

transistors dont les entrées étaient accessibles à travers des résistances. Voir figure 2.

- Les circuits DTL (diodes, transistor, logique). - Les résistances précédentes étant remplacées par des diodes. Voir figure 3.

Ces deux types de logiques sont encore utilisées, elles existent encore au catalogue des grands fabricants, mais elles sont en réalité quelque peu périmées.

- Les circuits TTL (transistor, transistor, logique). - La commande du transistor étant faite par un transistor très particulier, comportant plusieurs émet-teurs (de 1 à 8). Voir figure 4.

C'est ce type de circuit qui sera utilisé dans le TXF1. Très courant, d'un prix de revient intéressant à cause d'une fabrication massive, il permet des fréquences de fonctionnement de l'ordre de 30 MHz.

- Les circuits ECL (Emitter Coupled Logic). - C'est une technique toute récente et dont l'avantage est de permettre une très grande vitesse de fonctionnement. (Certains circuits atteignent à ce jour 1000 MHz). Ils sont malheureusement plus coûteux. Contrairement à tous les autres, ils sont alimentés en tension négative.

Analysons maintenant le fonctionnement des circuits logiques fondamentaux.

a) La porte Nand/TTL.

C'est l'élément de base de la logique TTL. Les circuits plus complexes étant le plus souvent constitués d'une association de Nands. On trouvera en figure 5, le schéma interne utilisé : on reconnaît le transistor T_1 multi-émetteurs, commandant T_2 , mais ce dernier précède un étage de sortie T₃T₄ a transistors complémentaires. Cette sortie dite « Totem Pole » permet de faire passer le point S plus franchement, soit au +, soit au -.

Il est important de savoir que les circuits logiques sont sensibles à des différences de niveau. On distinguera le niveau 0 : toute tension comprise entre 0 V et 0,8 V; et le niveau 1 : toute tension comprise entre 2,4 V et 5 V. Les tensions comprises entre 0,8 V et 2,4 V sont à proscrire, car elles engendrent une instabilité.

Considérons le fonctionnement d'une porte à 2 entrées :

Si les 2 entrées e_1 et e_2 sont portées au niveau 1, et seulement dans ce cas, la sortie S se met au niveau 0. Dans tous les autres cas, S reste au niveau 1. Les 4 possibilités sont résumées dans le petit tableau ci-dessous, appelé table de vérité :

e_1	e_2	S
1	1	0
1	0	1
0	1	1
0	0	1

Remarques:

- Une entrée « en l'air » se met au niveau 1. Ce n'est pourtant pas recommandé, car elle sera assez sensible aux perturbations extérieures (parasites par exemple). Il sera donc preferable de la relier au + 5 V. Mais il est dangereux de le faire directement : il suffit d'intercaler une résistance de l'ordre de 4 700 Ω , pour réduire les risques de détériorations du circuit. De toute façon il sera toujours préférable de relier une entrée non utile, à une autre entrée utilisée (du même circuit, évidemment).
- Dans le cas d'une porte à 2 entrées, la table de vérité nous montre que si nous les relions ensemble, le circuit fonctionne simplement en inverseur : lignes 1 et 4 de la table.
- On trouve en figure 6 le symbole du Nand. Le petit cercle

sur la sortie indique une inversion. En effet le mot Nand est la contraction des mots anglais nor et and, signifiant non et et. Les lecteurs ayant quelque connaissance de la logique mathématique, s'apercevront facilement que la table de vérité du nand est bien celle du nom $(e_1$ et e_2), ce qui s'écrit plus simplement e_1 Λ e_2 ou $e_1 \cdot e_2$ en algebre de Boole.

Nous utiliseront deux types de porte Nand:

- Le SN7400 : c'est un circuit qui contient 4 portes Nand à 2 entrées chacune. Ce circuit, comme tous ceux que nous utiliserons est monté dans un boîtier dual-in-line. On trouvera le brochage du SN7400 en figure 7. Attention: tous les brochages des circuits intégrés sont toujours donnés, vus du dessus et non du côté des broches, c'est-à-dire du côté du circuit imprimé.
- Le SN7420 : Il contient 2 portes Nand à 4 entrées. Même boîtier. Voir figure 8. Nous utiliserons aussi une porte Nand particulière.
- Le SN7413 : comme la SN7420, il contient 2 portes Nand à 4 entrées chacune, Mais ces portes ont la particularité de fonctionner en Trigger de Schmitt. C'est à dire qu'elles sont capables d'admettre sur leurs entrées des signaux à variation quelconque : sinusoïdale, à montée lente, triangulaire, etc., en les transformant sur leur sortie en signaux bien rectangulaires, à montée rapide, parfaitement compatibles avec les entrées TTL classiques. Le brochage identique à celui de la porte double SN7420 est néanmoins donné en figure 9, laquelle nous donne une idée de la structure interne différente.

b) Le basculeur simple

On en trouve le schéma en figure 10.

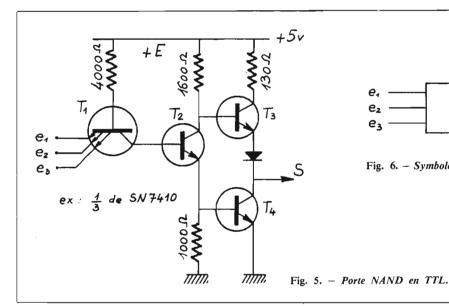
Il s'agit de deux Nand à couplage croisé.

- Supposons $\overline{S} = \overline{R} = 1$ et A = 0: alors le Nand 2 a ses 2 entrées, l'une à 0, l'autre à 1, sa sortie B se met à 1.
- Supposons $\overline{S} = \overline{R} = 1$ et A = 1: alors le Nand 2 a ses 2 entrées à 1, sa sortie B passe à 0.

On remarque donc que les deux sortie A et X sont complementaires.

 Replaçons-nous maintenant dans l'état initial : $\overline{S} = \overline{R} = 1$, A = 0, B = 1. Portons momentanément \overline{S} à 0. Le Nand 1 a sur ses entrées, 0 et 1, sa sortie A passe donc à 1. Mais alors le Nand 2 reçoit deux 1 et sa sortie B passe à 0. Le montage a basculé.

Ramenons \overline{S} à 1. Le Nand 1 reçoit 1 et 0 : on conserve donc A = 1 et par conséquent B = 0.


- Il suffit_donc d'une action très brève sur S pour obtenir le basculement et avoir A = 1 et B = 0.
- De même, on aurait par action sur R, le basculement en sens contraire, ramenant A = 0et B = 1.

Remarques:

- Les entrées \overline{S} et \overline{R} sont actives lorsque leur niveau passe du 1 au 0. Elles sont sans effet lorsque celui-ci passe du 0 au 1. C'est la raison du signe d'inversion (barre) surmontant la lettre S ou R. En anglais: active Low.
- Lorsque plusieurs actions successives sont faites sur la même entrée, seule la première est active, les autres sont sans

c) Le basculeur JK.

Ce circuit résulte de l'intégration de montages bien connus de l'électronique traditionnelle, c'est-à-dire à « composants discrets » : entre autres, la fameuse bascule dite Flip-Flop ou Eccles-Jordan. Mais l'intégration a permis d'adjoindre les entrées J et K et cela confère au basculeur des propriétés insoupçonnées. A titre

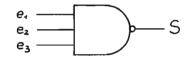


Fig. 6. - Symbole de la porte Nand.

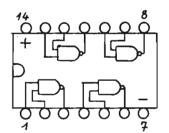
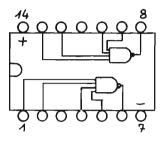



Fig. 7. - SN7400 (vue dessus).

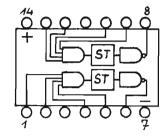


Fig. 9. - SN7413.

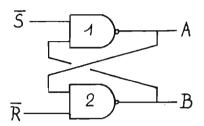


Fig. 10. - Basculeur R.S.

documentaire et pour que l'on soit bien conscient de la complexité du montage, nous donnons en figure 11, l'organisation possible d'un basculeur JK: on y retrouve tout d'abord deux basculeurs simples: le maître et l'esclave. Le fonctionnement détaillé du circuit étant complexe, il n'est pas dans nos intentions de vous l'exposer. Nous en donnerons simplement les grandes lignes.

• 1^{er} cas : J = 1, K = 1.

Le basculeur va alors fonctionner exactement comme un Eccles-Jordan, c'est-à-dire que la sortie va changer d'état à chaque impulsion arrivant sur l'entrée H (entrée d'horloge, clock en anglais).

Voyons le détail de l'opération : se référer à la figure 13.

— De t_1 à t_2 : blocage des Nand 5 et 6, provoquant la séparation du basculeur maître

et de l'esclave.

- De t_2 à t_3 : transfert des informations J et K à travers le basculeur maître.

-- De t_3 à t_4 : inhibition des entrées J et K et reconnection maître-esclave, amenant à l'ins-

tant t_4 , l'affichage du résultat sur les sorties Q et sa complémentaire \tilde{Q} (lire Q barre).

Dans ce premier cas, nous obtenons une division de fréquence par 2. Voir figure 14. Le signal obtenu est parfaitement symétrique. (Rapport cyclique de 1.) Il faut bien remarquer que le changement d'état des sorties Q et Q, se fait sur le flanc descendant du signal d'horloge.

• 2^c cas : J = 0, K = 0.

Le basculeur est tout simplement bloqué dans l'état où il se trouve : le signal d'horloge est inactif.

• 3^c cas : J = 1, K = 0.

Dans ce cas, la sortie Q prendra le niveau 1, au premier coup d'horloge (donc $\overline{Q}=0$) et cela quel que soit son niveau au préalable. Les coups d'horloge suivants seront inactifs.

• 4^{c} cas : J = 0, K = 1.

C'est l'inverse : la sortie Q prendra le niveau 0, au premier coup d'horloge (Q, le niveau 1) et cela quel que soit son niveau au préalable. Les coups d'hor-

loge suivants seront également inactifs.

Rôle de \overline{S} : Dite de Preset. C'est la remise préalable à 1. Elle permet donc avant toute action sur H, de faire Q = 1 et Q = 0. Cela s'obtient en portant S (normalement au niveau 1) au niveau 0, pendant un temps très court.

Rôle de $\overline{\mathbf{R}}$: Dite de Clear (ce qui signifie effacement). C'est la remise à zéro : elle permet de retrouver Q=0 et $\overline{Q}=1$. Cela s'obtient aussi en portant cette entrée à 0, alors qu'elle est normalement au 1.

Dans notre montage, nous n'utiliserons qu'un seul type de IK:

• Le SN7473 : voir figure 15. Il s'agit d'un double basculeur JK. Chacune étant muni d'une entrée J, d'une entrée K, d'une entrée R (clear) et d'une entrée H (clock). Il n'y a pas d'entrée S.

Toujours en boîtier dual-in-line, 14 broches.

associations de basculeurs JK.

Par ailleurs, nous trouverons dans les circuits « décades » des

Il nous est donc possible d'aborder maintenant le fonctionnement du compteur.

2. LE COMPTEUR.

Cette section de l'appareil est chargée :

- De compter les impulsions reçues pendant l'ouverture de la porte.
- D'afficher le résultat du comptage en base 10, c'est-à-dire suivant notre manière habituelle de lire les nombres.

Le compteur comprendra donc autant d'étages que de chiffres prévus (digits). Ici, avec le TFX I, nous avons choisi un compteur à 6 chiffres : donc à 6 étages. Chaque étage comprend :

- Une décade de comptage, comptant de 0 à 9 et sortant le résultat en binaire (base 2).
- Un circuit de transfert (ou de mémoire) ne laissant passer le résultat que lorsque le comptage est bien terminé.
- Un circuit décodeur, assurant la conversion en décimal du résultat binaire et réalisant en même temps la commutation des

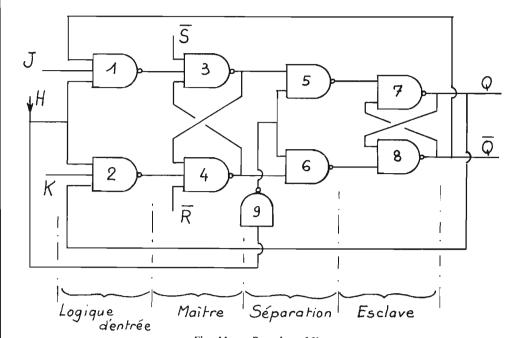


Fig. 11. - Basculeur J.K.

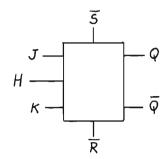


Fig. 12. - Symbole du J.K.

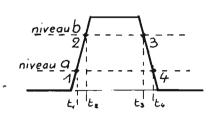


Fig. 13. – Action du signal d'horloge.

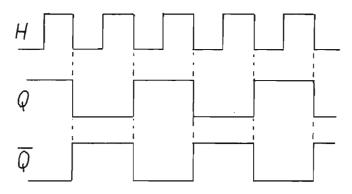
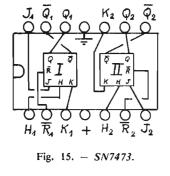



Fig. 14. – Diviseur de fréquence par 2 (J = 1, K = 1).

DI chaque partie. Π IIIa) La décade. Q Q Q K R 115

Fig. 16. - Schéma équivalent du SN7490.

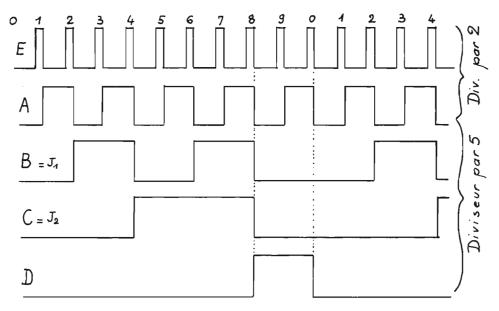


Fig. 17. - Diagramme de fonctionnement du SN7490.

différentes cathodes du tube d'affichage (tube de Nixie).

Voyons le fonctionnement de

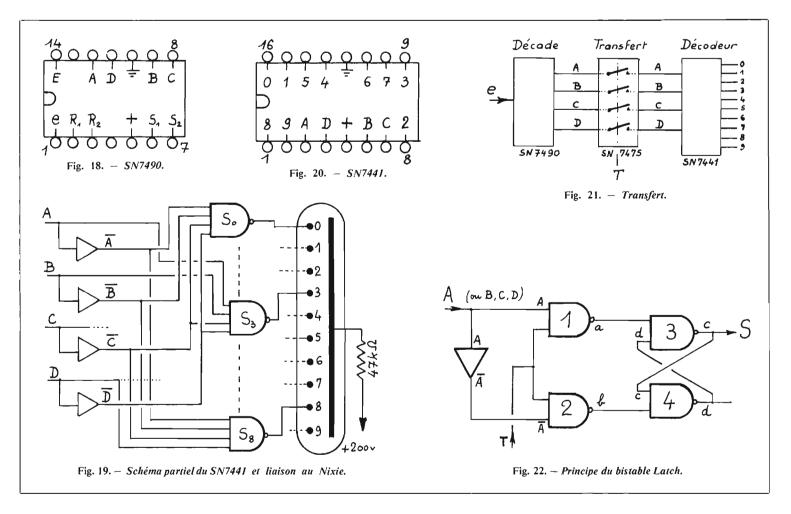
C'est un circuit type SN7490 qui en assure la fonction. Nous trouvons en figure 18 son brochage et en figure 16 son schéma interne équivalent.

Essayons de comprendre ce qui s'y passe en utilisant les figures 16 et 17. Nous distinguons 4 basculeurs JK:

Le premier (1) est autonome, ses entrées J et K sont au niveau l : Ce JK est donc un simple diviseur par 2. Sa sortie est appelée A.

Cette sortie est raccordée extérieurement (pont 12-1) à l'entrée d'une chaîne de 3 basculeurs (II, III, IV) constituant un diviseur par 5.

Au départ nous supposons $B = C = \dot{D} = 0$, donc $\overline{D} = 1$.


Le J de II est donc à 1, ainsi que le K. Le basculeur · II va donc diviser par 2 et donner le signal B.

Le III ayant J = K = 1, divise aussi par 2 et donne C. (Les basculements se faisant toujours sur les flancs descendants des signaux d'horloge.)

Le basculeur IV reçoit sur son entrée horloge le signal A (comme II), mais possédant 2 entrées J, il faudra qu'elles soient toutes les deux au niveau 1. pour que IV bascule sur le front descendant suivant de A (car K = 1). Or le diagramme de la figure 17, montre que $J_1 = J_2 = 1$, pendant les instants 6 à 8 (car $J_1 = B$ et $J_2 = C$). Le IV basculera donc au premier flanc descendant de A qui suivra : c'est-àdire à l'instant 8, donnant D = 1 et D = 0. Mais alors, le J de Il vient à 0 et le deuxième bascu leur déjà au 0, y reste au coup d'horloge suivant (instant 0) alors que le IV repassera à 0.

On constate donc que à la di deme lim, la figure 17), tous les basculeurs repassent à 0. L'ensemble a donc

Nº 1392 - Page 111

« recycle » et cela s'est bien fait à la dixième impulsion reçue : Nous avons bien une décade.

Nous donnons dans le tableau suivant, les niveaux des sorties pour les différentes impulsions reçues :

Impul.	D	С	В	Α
0	0	0	0	0
Ĭ	0	Ō	Ö	ì
2	0	0	1	0
2 3	0	0	1	l
4	0	Į	0	0
4 5 6	0	1	0	1
		1	1	0
7	0	1	1	l
8	1	0	0	0
9	1	0	0	1
10	0	0	0	0

Les lecteurs connaissant la numération en base 2, reconnaîtront aisément la traduction en binaire des signaux d'entrée.

Rôle de R₁et R₂: (remise à zéro). Ces deux entrées, normalement au niveau 0, remettent tous les basculeurs à 0, quand on les porte à 1, pendant un brefinstant, ceci quel que soit l'état de chacun (active High).

Rôle de S_1 et S_2 : (remise à 9). Ces entrées permettent de la même manière d'amener directement la décade dans l'état 9, soit A=1, B=0, C=0, D=1. Cette possibilité n'est pas exploitée dans notre compteur.

Page 112 - Nº 1392

h) Le décodeur.

C'est un circuit du type SN7441 (ou 74141). Le schéma interne est très compliqué, à cause du grand nombre de portes Nand utilisées.

Nous en donnons une petite partie en figure 19.

Chaque sortie S_0 à S_0 est au 1, lorsque toutes les entrées correspondantes ne sont pas simultanément au 1. Elles passent au 0, si toutes les entrées sont à 1. Ainsi S_0 reçoit \overline{A} , \overline{B} , \overline{C} , \overline{D} . Il faut donc $\overline{A} = \overline{B} = \overline{C} = \overline{D} = 1$, soit A = B = C = D 0 donc à l'impulsion 0 (voir le tableau précédent).

 S_3 reçoit A, B, \overline{C} , \overline{D} . Il faut donc A = B = \overline{C} = \overline{D} = 1, soit A = B = 1 et C = D = 0. C'est ce qui se passe à la troisième impulsion.

 $\overline{A} = \overline{B} = \overline{C} = D = 1$, soit A = B = C = 0 et D = 1, ce que nous obtenons effectivement à la huitième impulsion.

Les sorties S₀ à S₉, sont en fait constituées de transistors haute tension (souvent protégés par zeners). Ces sorties sont reliées aux cathodes d'un tube de Nixie, dont l'anode est au + 200 V.

Lorsque l'une des sorties se met à 0, la cathode correspondante est reliée à la masse et s'illumine par ionisation : le chiffre décodé est donc affiché. Pendant ce temps, les autres sorties sont, elles, coupées de la masse, aussi un seul chiffre peut-il s'illuminer à la fois.

Le SN7471 est présenté en boîtier dual-in-line 16 broches. On en trouvera le brochage en figure 20.

c) Le transfert.

C'est un circuit SN7475 qui en réalise la fonction.

Ce circuit est nécessaire pour obtenir un « affichage mémorisé ».

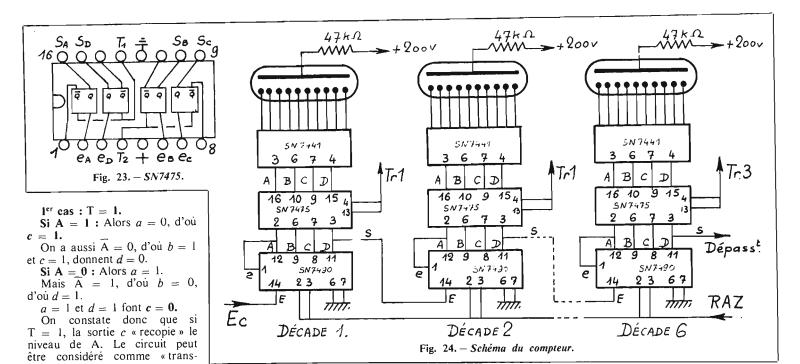
De quoi s'agit-il?

Lors d'une mesure de fréquence, le compteur dénombre pendant une seconde (par ex.) le nombre d'impulsions reçues. Donc, pendant cette seconde, les chiffres défilent très rapidement et ils sont totalement illisibles. La seconde écoulee, le résultat apparaît. Mais en réa lité, le comptage est répétitif : on verrait donc périodiquement et pendant un temps fort court, un affichage fixe, entre de plus longues périodes illisibles. Ce serait fort désagréable.

Le circuit de transfert supprime ce défaut :

Il s'agit en fait, d'une coupure provoquée entre la décade et le décodeur (voir Fig. 21). Au départ, la décade est à 0 et le décodeur affiche 0 sur le Nixie. Le transfert est bloqué. (Pas de passage.) La décade compte alors, pendant une seconde, mais rien ne traverse le SN7475, de telle sorte que le Nixie continue à afficher 0.

La seconde terminée, la décade s'arrête sur un certain nombre. Le transfert se débloque alors et l'information atteint le décodeur et le Nixie, lequel affiche le résultat.


Le transfert se rebloque, mais conserve sur ses sorties, la « mémoire » du résultat : l'affichage demeure.

La décade, remise à 0, peut effectuer un nouveau comptage, le résultat précédent étant toujours lisible. Le nouveau résultat sera transféré de la même manière et corrigera éventuellement le précédent.

L'utilisation du compteur devient donc agréable : l'affichage est fixe et si les comptages répétés périodiquement donnent un résultat constant (cas d'une fréquence mesurée bien fixe), aucun chiffre ne changera. Si un lèger glissement de fréquence se produit, changera seulement le chiffre des unités, éventuellement celui des dizaines.

Le circuit SN7475 contient 4 basculeurs type RS (4 bistables « latch ») (voir Fig. 23). Chacun d'eux étant organisé comme sur la figure 22.

On distingue un basculeur simple associé à 2 portes Nand et à 1 inverseur.

 2^e cas : T = 0.

parent ».

Alors, quel que soit le niveau de A, les sorties a et b resteront à 1, et le basculeur (3 et 4) va rester dans l'état où il se trouvait, gardant en « mémoire » la dernière position imposée lors du fonctionnement avec T = 1.

Pour terminer l'étude théo-

rique du compteur, nous donnons en figure 24, son organisation réelle. Nous avons représenté 3 décades complètes sur les 6, dont il est effectivement muni. Les nombres portés sont ceux des broches. On constate que la sortie de chaque décade est utilisée pour commander la suivante. La sortie de la dernière est envoyée dans un circuit de dépassement à voyant lumineux, indiquant que le comptage a dénombré plus de 999 999 impulsions et que l'affichage est faux, puisqu'il manque les chiffres les plus significatifs : ceux de gauche.

La remise à 0 est commune à toutes les décades, par contre la commande de transfert est scindée en 3: Tr₁, Tr₂, Tr₃. Nous verrons plus loin la raison de cette commande fractionnée.

(A suivre) F. Thobois.

tabey à LYON

15, rue Bugeaud - Tél. 24-32-29

Casques

Micros
Boîtes de mixage
Pieds micro
Bandes magnétiques
Alimentations secteur
Emission 27 MHz

Haut-parleurs

Kit haut-parleurs
Tissus pour baffles
Enceintes
Haut-parleurs guitare
Cordons de jonctions
Connecteurs

Composants

Module B.F.
Module F.I. H.F.
Kit ampli
Coffrets
Mesure
Fer à souder

Amplificateurs

Tuner
Platine P.U.
Magnétophones
Cellules magnétiques
Librairie
Télévision

BST - HECO - PEERLESS - AUDAX - GEGO - KF - SUPRAVOX - AMTRON - MERLAUD - TEKKO - AKG - BEYER - MELODIUM - CHINAGLIA - VEROBOARD - AGFA - SCOTCH - SHURE - EMPIRE METRIX - THORENS - GARRARD - LENCO - SONY - REVOX - UHER - SEM - SCIENTELEC, etc.

CIRCUITS DE PERCUSSION POUR INSTRUMENTS ELECTRONIQUES DE MUSIQUE

INTRODUCTION

E mot percussion signifie « action par laquelle un corps en frappe un autre ». Les instruments de percussion sont ceux dont l'executant frappe leur élément vibrant. Ainsi sont obtenus les sons des instruments à percussion tels que cymbales, tambours et autres instruments anciens et modernes de ce genre, comme, évidemment, le piano.

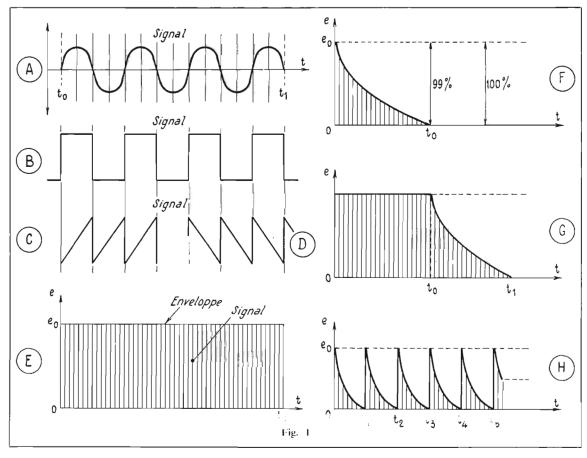
Dans les instruments électroniques de musique, les notes percutées doivent être obtenues par des procédés électroniques. A cet effet, on a imaginé des dispositifs divers dont nous allons donner quelques exemples.

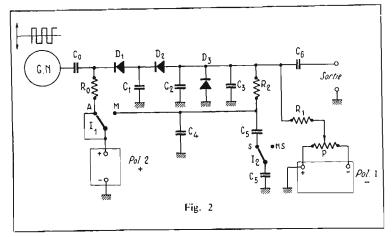
FORME DES SIGNAUX

A la figure 1, on indique en (A) (B) (C) et (D) la forme d'un signal ininterrompu, par exemple sinusoïdal, rectangulaire ou en dents de scie.

Le signal commence à un temps $t = t_0$, au moment où l'executant appuie sur une touche. Il cesse des que l'exécutant cesse d'appuyer sur la touche. C'est donc un signal constant dont la durée est - to, celle-ci dépendant de l'exécutant. L'amplitude du signal ininterrompu (terme préférable à continu, celui-ci pouvant induire en erreur) est constante et il est possible de représenter l'amplitude de la tension, par exemple, par une droite parallèle à l'axe des temps, comme le montre la figure I (E). Si le signal commence à t = 0 et s'arrête à $t = t_1$, sa durée est t_1 et t_1 peut avoir une valeur quelconque, très faible (par exemple 1 s) ou très longue (par exemple 30 s).

Un signal percuté est celui qui, un compos Z = 0, parcud inscarde nement la valeur maximale, par exemple $e = e_0$ (voir Fig. 1 F) Page 114 – N° 1392


mais ne conserve pas cette valeur car à peine l'ayant atteinte, la tension du signal (ou la puissance du son) décroit rapidement pour retomber à zero. La durée de la tombée est, comme dans tous les phénomènes analogues, infinie, mais en pratique, le signal s'éteint très rapidement jusqu'à une valeur négligeable, par exemple 1 % de sa valeur maximale.


Ce qui caractérise le signal de percussion est qu'il se produit automatiquement, autrement dit, même si l'exécutant continue à appuyer sur la touche, le son n'en reste pas moins un son percuté. Il en est ainsi au piano; si l'on appuie sur une touche, le son se produit mais cesse rapidement même si l'on continue à presser la touche car le son de piano est engendre par le marteau frappant la corde par l'action de la touche. Le marteau retombe immédiatement après avoir frappé la corde. Cette dernière vibre pendant quelque temps mais l'amplitude du signal diminue rapidement surtout si l'on utilise la pédale convenable étouffant le son (pédale de gauche).

Une autre sorte de percussion

est le Sustain (terme anglais) qui est représenté en (G) figure 1. A partir du temps t=0, le son se **maintient** jusqu'à $t=t_0$ puis décroît rapidement pour tomber pratiquement à zéro au temps $t=t_1$. C'est en quelque sorte un son à percussion retombée. En français on dira soutien.

Au point de vue de l'exécutant, les sons « soutenus » s'obtiennent de la manière suivante, grâce au dispositif électronique prévu à cet effet : au temps t=0, l'exécutant appuie sur la touche. Le son dure jusqu'à $t=t_0$ avec une puissance

constante. Au temps $t = t_1$ l'executant lâche la touche. Le son ne cesse pas brusquement mais prend un temps $t_1 - t_0$ pour décroître jusqu'à zéro. Sur le piano, la pédale de droite permet d'obtenir un effet de ce genre.

L'effet représenté en (H) figure l'est celui de **répétition** électronique. Un signal d'amplitude constante comme celui de (E) est découpé par des effets de percussion aux temps t_1 , t_2 ... t_n , cet effet pouvant être mis en action pendant la durée désirée par l'executant. Le procédé peut être électronique.

Le signal proprement dit peut avoir une des formes (A) à (D) et il est évident que les périodes $T_r = l_n - l_{n-1}$ (par exemple $l_3 - l_2$) seront grandes durant la période du signal. Ainsi si ce signal est à 1 000 Hz, sa période est 1 ms tandis que les interruptions pourraient s'effectuer par exemple quatre fois par seconde ($T_0 = 0.25 \text{ s} = 250 \text{ ms}$).

Pour obtenir le signal « répétiton », l'exécutant peut agir sur un bouton spécial qui mettra en marche l'effet considéré et celuici ne cessera que lorsque l'exécutant aura supprimé l'action de ce même bouton.

D'autres combinaisons d'action sont possibles.

Indiquons encore que la guitare et les instruments qui lui sont apparentés (mandoline, balalaïka, cobza, etc.) ainsi que le violon et les instruments apparentés, utilisés en staccato et en pizzicato, sont des instruments à percussion, comme également la harpe et instruments apparentés : les jeux de cloches, les bois frappés, etc.

Les « rythmeurs », instruments de musique électronique, donnent des sons répétés (Fig. 1 H). Ces genres de sons peuvent servir d'accompagnement pour « œuvres musicales » primitives ce qui permet aux compositeurs de simplifier leur travail concernant l'accompagnement. Les répétitions se font à périodes égales et de ce fait, les instrumentistes

sont obligés de jouer à la même cadence. Il est toutefois possible de creer des rythmeurs à périodes variables.

De même, tous les « effets » tels que ceux de « sustain » et de percussion peuvent être ajustables ou variables.

SCHEMAS THEORIQUES D'EFFETS SPECIAUX : SUSTAIN ET PERCUSSION

Les « effets spéciaux » doivent s'adapter parfaitement aux autres circuits électroniques de l'orgue (ou autres instruments électroniques de musique). L'adaptation porte principalement sur les points suivants : simplicité du montage spécial ajouté, alimentation pouvant être prélevée sur celle de l'instrument, équilibrage des niveaux de tension, économie de matériel, de volume, de poids et de prix de revient.

L'emploi des transistors et des circuits intégrés résoudra une partie des problèmes posés. Le montage électronique le plus simple est celui qui s'introduit dans l'instrument, dans la partie collectrice des signaux de notes: cette partie est la ligne nommée aussi « BUS » et relie l'ensemble des signaux des générateurs aux amplificateurs ou aux formants, s'il y en a.

À la figure 2 on donne un schéma de montage de sustain. GN est un générateur de note de l'instrument électronique de mupendant de la fréquence, au circuit d'effets spéciaux.

Le générateur GN fournit des signaux rectangulaires à périodes partielles égales. Une polarisation positive permanente est appliquée à la cathode de la diode D₁ par l'intermédiaire de la résistance R₀. Le circuit spécial

sique. Le signal BF à frequence

fixe engendre est transmis par C_0 , de valeur convenable, de-

tance R₀. Le circuit spécial comprend deux diodes D₁ et D₂ en sèrie et une diode D₃ en shunt, dont il convient de noter l'orientation anode-cathode.

L'ensemble comprend aussi deux sources de polarisation, l'une POL 2, pour la polarisation positive et l'autre, POL 1, pour une polarisation négative réglable avec le potentiomètre variable pur ajustable.

ou ajustable P. A remarquer l'emplacement de la masse sur ces sources.

Deux commutateurs sont également inclus dans ce montage, l'un I_1 permet, en position M, de polariser positivement la cathode de D_1 , l'autre I_2 , indé-

pendant de I₁, permettant d'introduire ou d'éliminer du montage, le condensateur C₅ de forte

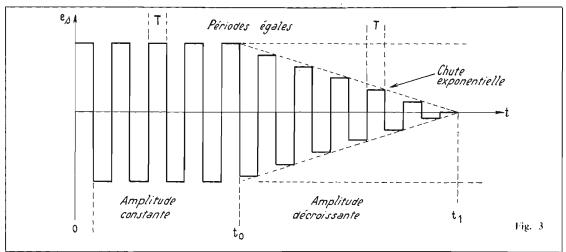
La polarisation négative est appliquée par l'intermédiaire de R₁. Lorsque le signal du générateur peut pénétrer dans le circuit, il ressort par l'intermédiaire de C₆ aux points « sortie » et peut être appliqué au BUS, c'est-à-dire au fil collecteur de tous les signaux de notes. La position A de l, est celle d'arrêt de la note considérée et la posi-

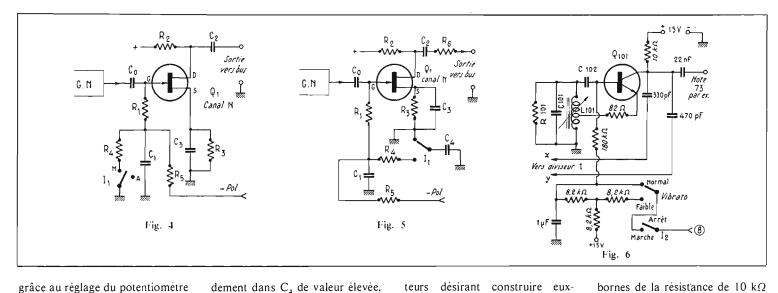
Remarquons que I₁ est associé à la touche de la note engendrée par GN; la position M correspond au cas où la touche est abaissée.

tion M est celle de marche.

Au repos, la polarisation positive est transmise à la cathode de D_1 et la polarisation négative à l'anode de D_3 et à la cathode de D_3 . Il en résulte le blocage de D_1 et D_2 et la conduction de D_3 . Le signal ne peut passer par D_1 et D_2 et, de plus, D_3 courtcircuite, en alternatif, la sortie.

Lorsque l'exécutant abaisse la touche, I_1 passe en position M et, de ce fait, la polarisation positive est appliquée par l'intermédiaire de R_2 , à l'anode de D_2 et à la cathode de D_3 . Dans ces conditions D_1 et D_2 deviennent conductrices et D_3 non conductrice. Le signal de note transmis par C_0 , D_1 , D_2 et C_6 parvient à la sortie.


Supposons que l₂ est en position NS, donc C₅ non connecté à la masse. Le signal passe lorsque I, est en position M. Pour obtenir l'effet Sustain (voir Fig. 1 G), le commutateur I, sera en position S. Le conden-sateur C, de forte valeur se chargera alors, avec le + vers R₂ et le - vers la masse, grâce à la polarisation positive POL 2. Pendant l'abaissement de la touche, le signal est constant comme celui de 0 à to de la figure 1 (G). Lorsque la touche remonte étant lâchée par l'exécutant, la polarisation positive cessant, les diodes D1 et D2 ne se bloquent pas immediatement mais seulement au bout d'un certain temps car C_5 les maintient positives grâce à sa charge. A partir de $t=t_0$ (Fig. 1 G) la décharge se produit. Elle est pratiquement complete au bout d'un temps $t_1 - t_0$ après le lâchage de la touche.


La figure 3 montre d'une manière plus précise comment varie l'amplitude crête à crête du signal rectangulaire à la sortie du circuit en position Sustain.

Les capacités C_1 et C_2 sont de faible valeur par rapport à C_3 . Elles se comportent comme les capacités d'un circuit intégrateur à deux cellules dont les résistances sont les diodes D_1 et D_2 au moment de leur conduction.

L'effet obtenu grâce à C_1 et C_2 est d'arrondir légèrement les signaux rectangulaires et d'éviter des sons étranglés au moment de la commutation.

Il est possible de faire varier l'effet Sustain en modifiant C_5 et (ou) la polarisation négative

grâce au réglage du potentiometre

L'augmentation de C₅ a pour conséquence l'augmentation de $T = R_2C_5 = constante de temps$ du circuit de décharge de C, donc, augmentation de la durée de celle-ci.

Si la polarisation negative augmente, C, se déchargera plus rapidement et l'effet ressemblera à un pizzicato. Si la polarisation négative est plus faible, le signal diminuera plus lentement et l'effet ressemblera à celui des instruments genre guitare.

Voici à la figure 4 un autre dispositif de Sustain, utilisant un transistor FET entre le générateur de note et le BUS collecteur de signaux de notes.

Le générateur GN transmet le signal, par l'intermédiaire de C₀, à la grille (ou porte = « gate ») du transistor à effet de champ Q₁. Ce transistor fonctionne normalement si G est au potentiel de la masse, la polarisation étant assurée par le circuit de source S, R₃C₃. Lorsque I₁ est en position A (arrêt, touche relevée) la tension de polarisation « POL – » polarise negativement la grille G par l'intermédiaire de R₅ et R₁ avec découplage par C₁. Le transistor est alors bloque. Dès que la touche est abaissée donc \dot{I}_1 en position M = marche, la grille est polarisée normalement et le signal passe, de sorte que l'on puisse le prélever à la sortie sur le drain d'où C2 le transmet à la ligne « BUS ».

Ensuite, si on lâche la touche. la polarisation négative de la grille G est retardée par C₁R₅ = T. Plus T est grande, plus le retard est grand et dans ce cas. la disparition du son s'effectue selon une certaine loi exponen-

Un montage analogue permet d'obtenir la percussion.

Lorsque I_1 est en position de court-circuit de C_4 , le transistor est bloque et le son ne passe pas. Si la touche est abaissée, C₁, préalablement chargé (avec le - vers R₁) se décharge rapi-Page 116 - Nº 1392

dement dans C, de valeur élevée, à travers R₄ de faible valeur. La tension de G diminue rapidelent et le son passe pendant un temps assez court car C₁ ne tarde pas à se charger négativement à travers R₅ reliée à la polarisation négative.

Ces schémas théoriques sont donnés par l'explication du fonctionnement des effets Sustain et percussion et non par leur réalisation pratique. En jouant sur les valeurs des éléments on pourra créer des constantes de temps RC différentes et modifier les effets désirés.

A remarquer que les circuits décrits doivent être associés à chaque note. Ils seront nombreux dans un orgue ce qui augmentera son prix de revient.

Ces montages sont toutefois indépendants de la fréquence du signal appliqué à l'entrée et le même schéma pourra être reproduit autant de fois que nécessaire.

On préférera évidemment les montages à diodes, car celles-ci sont actuellement très économiques.

LES CIRCUITS D'UN ORGUE **ELECTRONIQUE AMERICAIN**

Comme dans toutes les branches de l'électronique, les montages américains sont intéressants à analyser pour servir efficacement à l'étude d'une specialité quelconque. En ce qui concerne les orgues électroniques, il existe aux U.S.A. de nombreux constructeurs (ou facteurs ou organiers) d'orgues électroniques. Parmi eux citons les suivants : Schober, Hammond, Conn, Guilbransen, Baldwin, Lowrey, Allen, Thomas, Wurlitzer, Kinsman et bien d'autres.

Nous décrirons l'orgue Hammond, modèle à transistors.

Prévenons tout de suite nos lecteurs que cet appareil ne peut être reproduit par un amateur et qu'aucun commerçant ne le vend en kit. Par contre, les ama-

teurs désirant construire euxmêmes un orgue, trouveront en France, en Allemagne, en Belgique, en Angleterre, etc., des specialistes des orgues pouvant proposer des appareils complets ou des kits, avec des notices explicatives très détaillées. Plusieurs orgues de ce genre ont été décrits dans notre revue et d'autres seront décrits par la suite.

L'ORGUE HAMMOND

Ce constructeur s'est rendu célèbre par ses premiers modèles à générateurs électromagnétiques à roues phoniques et lampes. Par la suite, il a bien fallu en venir aux transistors. On propose les modèles de la série « J », présentant des parties communes entre eux.

On notera que les semiconducteurs utilisés sont indiques dans les schémas par des numéros propres au constructeur qui les sélectionne spécialement parmi des transistors commerciaux. Nous ne disposons pas de renseignements sur les éléments ou les valeurs des éléments ne figurant pas dans nos textes. Un orgue Hammond de cette série comprend, évidemment, toutes les parties classiques du montage considéré : générateurs de notes, formants, deux claviers, effets spéciaux tels que percussion et « réitération », réverbération, vibrato, trémolo et bien entendu les amplificateurs, alimentations, haut-parleurs et systèmes de contacts nécessaires.

Voici d'abord le montage des générateurs de notes.

Le schema d'un oscillateur est donné à la figure 6.

L'oscillation est entretenue grâce au couplage entre base et emetteur effectue avec la bobine L₁₀₁ à coefficient de self-induction variable, accordée par C₁₀₁ fixe et shuntée par R₁₀₁ afin d'obtenir une oscillation stable.

Le collecteur est polarisé par la résistance de 10 kQ reliée au + alimentation.

Le signal est prélevé aux

à une note désignée par 73 par exemple. En fait, le montage de la figure 6 est celui d'un maîtreoscillateur, disposé en tête d'un ensemble diviseur par 2, 4, 8, etc.

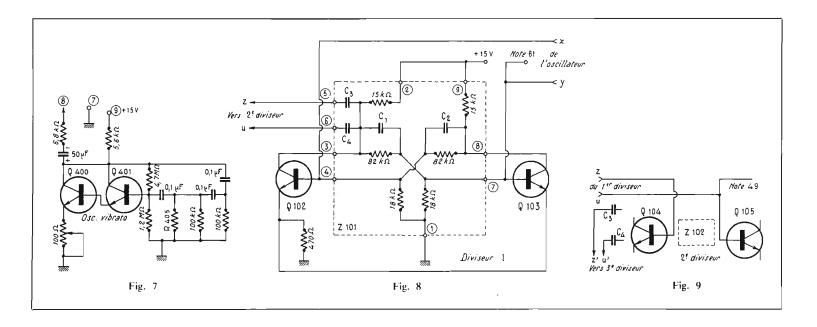
et transmis par le condensateur de 22 nF. Il correspond, pour

des valeurs convenables des élé-

ments d'accord et de couplage

Sur la figure 6 on indique d'ailleurs les points x et y, à connecter au premier diviseur que l'on trouvera à la figure 8, considérée plus loin.

Remarquons également sur figure 6 la résistance de 180 k() reliant la base de Q₁₀₁ à un réseau de résistances et de commutation destiné à l'introduction du vibrato dans le maîtreoscillateur.


A la figure 7 on donne le schéma de l'oscillateur de vibrato.

Celui-ci est un oscillateur à déphasage par reseau RC disposè entre le collecteur et la base de Q₄₀₁. Le point 9 est le + alimentation, le point 7 la masse et le point 8 est la liaison avec le maître-oscillateur tandis que Q400 est un transistor intermédiaire entre l'oscillateur de vibrato et le maître-oscillateur. Grâce au potentiomètre de 100 Ω de l'emetteur de Q400, il sera possible de régler l'excursion qu'exercera le vibrato à 7 Hz environ, sur la fréquence de l'oscillateur

Q₁₀₁. La résistance R₄₀₅ se détermine experimentalement pour obtenir la fréquence de vibrato requise.

Revenons à l'oscillateur de la figure 6.

Lorsque I, est en position « marche », le point 8, sortie du signal à très basse frequence du vibrato est connectée à I,. Celui-ci est à deux positions. La position « normal » envoie, par l'intermédiaire de la résistance de 180 kQ, le signal vibrato sur la base de Q₁₀₁ et, de ce fait, la modulation de fréquence s'exerce sur le signal BF de

Lorsque I₁ est en position « Fairle », le signal vibrato est atténué et la modulation de fréquence est moins prononcée. Voici maintenant les valeurs de R_{101} , C_{101} et C_{102} permettant d'obtenir des douze maîtres oscillateurs les douze notes de la gamme chromatique:

ple le la 6 et le la dièse 6 on a $3520 \cdot 1,06 = 3731,2$, valeur très proche de la valeur exacte qui est 3 727,70, la différence étant due au fait que le rapport est légérement plus faible que 1,06. Sa valeur exacte est la racine d'ordre douze de 2 :

TABLEAU

Indice	Note	(Hz)	(kΩ)	C ₁₀₁ (nF)	C ₁₀₂ (nF)
7	FA dièse	5 917,18	68	22	47
7	FA	5 587,52	82	22	47
7	MI	5 273,12	100	22	47
7	RE dièse	4 973,18	68	25	56
7	RE	4 699,11	82	25	56
7	DO dièse	4 432,44	100	25	56
7	DO	4 185,50	47	15	33
6	SI	3 950,27	56	15	33
6	LA dièse	3 727,70	82	15	33
6	LA	3 520,00	56	18	39
6	SOL dièse	3 319,88	68	18	39
6	SOL	3 134,92	82	18	39

En se souvenant que les douze maîtres oscillateurs commandent des diviseurs de fréquence, il est évident que les notes du tableau ci-dessus sont les plus aiguës de l'orgue et se situent vers 4 000 Hz. Il en résulte que le fa dièse du tableau doit être le sa diese indice 7 à la fréquence de 5 917,18 Hz. En descendant, on trouvera des fréquences plus faibles, diminuant successivement de 1,06 fois environ, ce qui aboutit au sol indice 6 à la fréquence de 3 134,92 Hz.

Vérifions que les fréquences des deux notes consécutives séparées « musicalement » par un demi-ton tempéré, sont dans le rapport 1,06 environ.

En esset, en prenant par exem-

1,059...

la fréquence 3 134,92, on aboutira, avec le sixième diviseur à sol indice zéro à la fréquence de 48,98 Hz.

Finalement, l'orgue couvrira la gamme de 48,88 Hz à 5917,18 Hz, soit 7 intervalles d'octaves.

De même si l'on part du maître

oscillateur donnant le sol 6 à

Considérons le schéma de la figure 8 qui représente le premier diviseur de fréquence. Supposons qu'il soit attribué à la note fa dièse indice 6; il reçoit par les points xy le signal à f = 5917,18. Ce signal commande le multivibrateur $Q_{102} - Q_{103}$. A l'entrée xy on a la note 73 et à la sortie zu on obtient la note 61; donc, comme 73 - 61 = 12, il s'agit bien sûr du fa dièse indice 6, à f = 2958,59 Hz.

Remarquons que les sorties

des signaux de notes sont sur la base du transistor Q₁₀₃.

En reliant les points z, u aux mêmes points du deuxième divi seur, dont le schéma réduit est donné à la figure 9, on obtient la note 49, qui est le fa dièse indice 5 à 1479,29 Hz. La liaison z', u' aboutira au troisième diviseur et ainsi de suite.

Tous les diviseurs ont les mêmes schémas et les valeurs des éléments peuvent changer d'un diviseur au suivant.

A remarquer que dans les nouvelles réalisations d'orgues électroniques, on utilise des diviseurs à circuits intégrés et on n'aura pas à se préoccuper de leurs schémas extérieurs mais uniquement de leur mode de branchement.

F. JUSTER.

LES DIVISEURS DE FREQUENCE

Chaque maître oscillateur, avec ou sans vibrato, commande les diviseurs de fréquence qui engendrent les signaux octaves descendants.

Dans l'orgue considéré, chaque maître oscillateur est suivi de six diviseurs, classés de la manière suivante : quatre pour le registre normal et deux pour le registre à très basse sréquence (pédales).

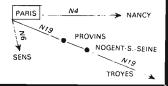
Partons par exemple du fa diese à 5917,18 Hz. C'est le fa dièse indice 7. Le premier diviseur donnera la même note en indice 6, le deuxième, fa dièse indice 5... le sixième fa dièse indice 1 dont la fréquence est 92,45 Hz.

POUR MIEUX VOUS SERVIR!...

LE CALME

D'UN **ETOILES** TROIS DE

MARANTZ 20-3 300-250-2 LST-401 SME 30.000 F + CADEAU AMPLI-TUNER MAGNÉTO REVOX + 2 AR2 9 600 F + CADEAU


SERVICE APRÈS-VENTE - PRIX PARIS - INSTALLATION

LES GRANDES MARQUES EN DÉMONSTRATION

STATION 2001...

5, rue des Fortifications (rue près Mairie) NOGENT-S.-SEINE (10)

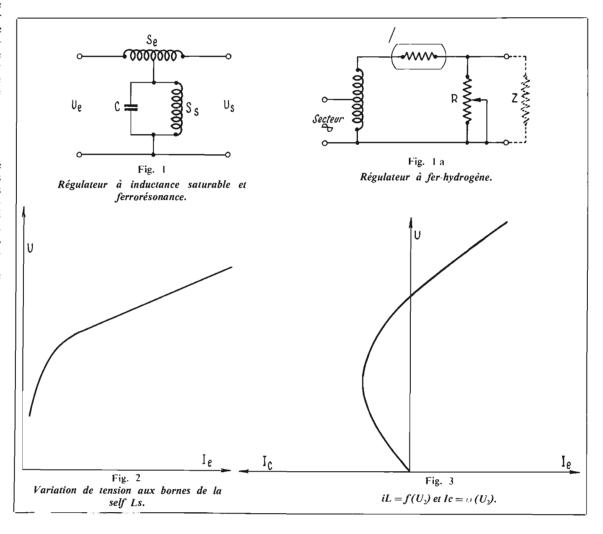
Téléphone : 25-81-56 OUVERT DU MARDI AU DIMANCHE INCLUS

LES REGULATEURS DE TENSION

A régulation automatique de la tension du réseau est un problème délicat qu'il faut considérer avec précaution.

Qu'il s'agisse du pourcentage de régulation, de la marge de régulation, de la vitesse de régulation; ces diverses conditions détermineront du choix du système.

Divers procédes ont été proposés et réalisés. Le plus ancien est le régulateur à fer-hydrogène dont le principe est le suivant : Entre deux températures de fonctionnement déterminées, la résistance ohmique d'un fil de fer varie brusquement et par ailleurs, dans d'autres limites de variation de température, le changement de valeur de la résistance est peu sensible. Ce fil de fer est inclus dans une ampoule scellée remplie d'hydrogène. Ce gaz présente deux qualités importantes il n'a aucune affinité chimique avec le fer et une très bonne conductibilité. Le principe du montage est celui représenté figure A. - le tube régulateur est en série dans l'utilisation. Compte tenu des conditions moyennes d'utilisation, le réglage du courant qui traverse le ser-hydrogène est donné d'une part par l'utilisation, d'autre part par le réglage du potentiomètre P₁. Le courant qui traverse le fer-hydrogène élève sa température et permet de le situer dans de bonnes conditions de variations de résistance compatibles avec une bonne régulation. Nous voyons tout de suite les avantages et les défauts de ce système. Avantages : il est simple et peu coûteux. Défauts : il ne fonctionne que dans des conditions très particulières, sa charge doit être fixe et bien déterminée, le rendement est très faible, puisque une grande partie de la puissance est perdue en chaleur, il est encombrant et fragile. Malgré tous ces défauts, il a connu il y a une trentaine d'années un certain succès.


Les semi-conducteurs ont donné naissance à divers systèmes de régulations. Entre autres, les résistances CTN, les thermistances dont le facteur de variation de résistance, entre 20 °C et 100 °C de température peut être supérieur à 10 et même beaucoup plus. Ce dispositif est utilisé pour reguler de petites puissances; il a presque tous les mêmes défauts que le régulateur fer-hydrogène sauf la fragilité et l'encombrement. Un autre procédé est le régulateur électromécanique. Il est utilise souvent pour la stabilisation de puissances importantes et en particulier en triphasé. Il se compose comme partie essen tielle de régulation d'un autotransformateur à rapport variable (ou de 3 autotransformateurs associés pour le triphasé). Ces autotransformateurs étant du genre Variac ou Alternostat.

Ces autotransformateurs sont constitués d'un enroulement à une seule couche dont une partie est dénudée, afin que s'établisse le contact d'un curseur qui permet de faire varier le rapport de transformation. Il est bien

compréhensible que le réglage de ce curseur peut être fait automatiquement de manière à conserver à la sortie une tension constante quelles que soient les variations de la tension du réseau ou les variations de charge (dans certaines limites, bien évidemment).

Un dispositif électronique ou autre, connecté à la sortie utilisation permet de comparer par rapport à une reference fixe, les variations de tension en plus ou en moins et de transmettre les ordres voulus au servomoteur.

Ce genre de régulateur pré-

sente de grands avantages. Il peut être réalisé pour de l'ortes puissances, il n'est pas influencé par des variations de l'réquence, ni par le facteur de charge : la forme d'onde n'est pas altérée. Par contre, le temps de réponse du système est lent. Il ne répond pas aux variations de tensions rapides, il est équipe d'un en semble mécanique délicat qu'il faut constamment vérifier et entretenir, il est d'un prix de revient très important.

La dernière classe de régulateur est le régulateur ferromagnétique. C'est de très loin le plus utilisé. Celui qui nous intéresse est le régulateur à inductance saturable et lerroresonance.

Nous allons maintenant ana lyser son principe dont le schéma classique est représenté figure 1.

Ls : représente la self à fer saturé.

Le : l'inductance série constituée par une sell à noyau magnétique avec un entrefer.

C: un condensateur qui est calculé pour donner la résonance avec Ls, dans les conditions moyennes d'utilisation.

Nous avons trace sur la figure 2, la courbe qui représente la variation de tension aux bornes de la self Ls. en fonction du courant qui la traverse. Par suite de la saturation magnétique, cette courbe présente un coude et après ce coude une partie à faible pente, sensiblement rectiligne, c'est dans cette partie que se déplace le point de fonctionnement.

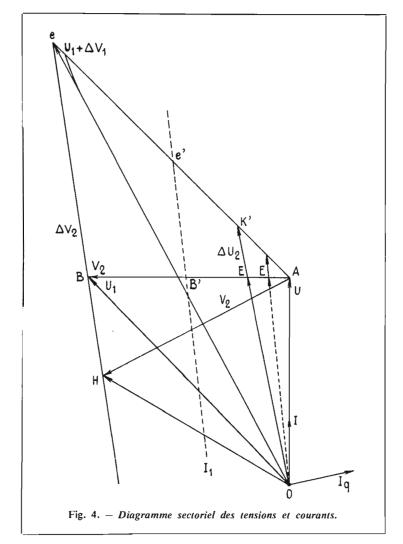
Soit: iL: le courant qui passe dans la self.

iC: le courant qui passe dans le condensateur.

Si l'on admet que la self Ls est une inductance pure, les courants iL et iC sont en opposition de phase et le courant iQ est égal et leur différence arithmétique.

D'autre part, iC varie linéairement en fonction de la tension aux bornes du condensateur. En représentant sur un même gra phique (Fig. 3) iL = $f(U_2)$ et iC = o (U2). En portant en abscisse positive iL et en abscisse négative iC, en retranchant arithmétiquement iL et iC, on obtient la courbe $iQ = f'(U_2)$ qui coupe l'axe des ordonnés au point U_0 . En examinant $iQ = f(U_2)$ on voit qu'une augmentation de U, par rapport à U₀ se traduit par un courant iQ inductif et qu'au contraire une diminution de U, se traduit par un courant iQ capacitif.

Une faible variation de tension Δ U₂ provoque une forte variation de courant Δ iQ et comme on peut assimiler la partie utile de la courbe U₂ = f (iQ) à une droite. il y a proportionnalité entre Δ U₂ et Δ iQ.

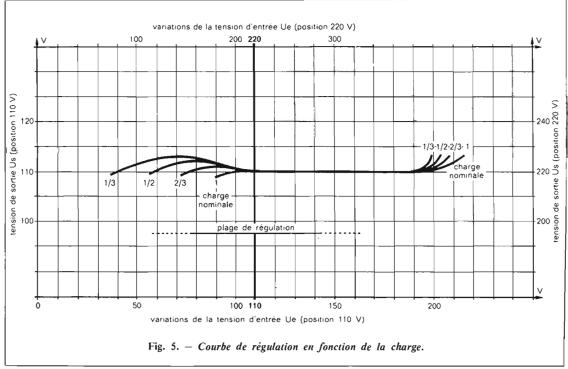

On peut ensuite démontrer, en construisant le diagramme vectoriel des tensions et des courants (Fig. 4), qu'il existe une valeur α du rapport N/N₂ tel que la tension de sortie reste constante, quelles que soient les variations de tension entrée (dans une certaine marge de variations). Il en est de même pour une variation de charge.

Analysons maintenant les avantages et inconvénients des régulateurs ferromagnétiques : D'abord une robustesse extraordinaire, aucune pièce délicate ou fragile (selfs imprégnées et condensateurs étanches), aucune pièce en mouvement, aucun entretien ni surveillance, un fonctionnement assuré dans des conditions climatiques extrêmes : au froid, au chaud, à l'intérieur, à l'extérieur, dans l'air humide, etc.

Un très haut rendement en puissance, aucun danger de mauvaise utilisation. Un court-circuit de la charge n'entraîne aucun accident grave (la tension de sortie du régulateur s'annule). Une surtension exagérée au primaire (erreur de branchement de la tension au secteur par exemple, la tension de sortie est automatiquement limitée à une valeur raisonnable).

Les inconvenients: Ensemble lourd et sensible aux variations de fréquence du réseau. Pour le poids, il n'y a malheureusement pas beaucoup de remédes. Quant aux variations de fréquence, le réseau français ainsi que tous les réseaux européens garantissent leurs fréquences à mieux que 1 %; cet inconvénient est pratiquement inexistant.

En conclusion, a part le poids, le régulateur ferromagnétique est



et restera encore longtemps le régulateur idéal.

Tout ce qui vient d'être décrit plus haut concerne le

régulateur ferromagnétique classique.

Le nouveau régulateur Dyna tra Univers a bénéficié d'une

expérience de vingt années. Il arrive apres bien des modèles Dynatra toujours plus perfectionnés. Le régulateur Univers comporte, il est vrai, de tout nouveaux circuits magnétiques très petits aux caractéristiques très poussées et des composants électroniques des plus modernes.

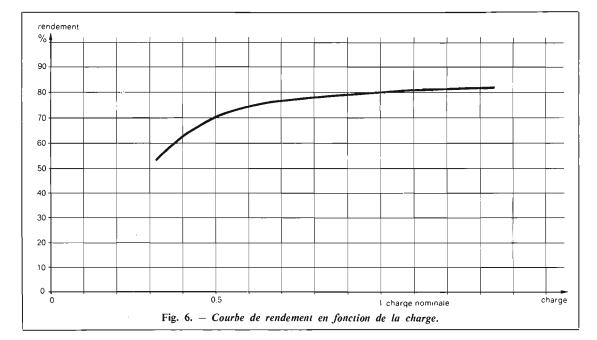
Ses performances sont en net progrès par rapport aux anciens modèles, nous allons les analyser dans le détail. Courbe n° 1 (tension de sortie en fonction de la tension du secteur et de la charge) de la figure 5.

Nous remarquons la constance de la tension de sortie. Pour des variations de la tension secteur ± 30 % et pour la charge nominale, la tension de sortie ne varie pas de plus de 2 % et qualité propre à tous les régulateurs Dynatra: cette grande marge de sécurité vers les très fortes augmentations de tension réseau.

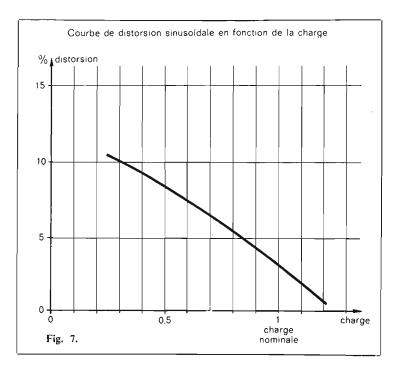
Courbe nº 2 (rendement en fonction de la marge) de la tigure 6. Sur ce point, un net progrès a été réalisé. Le rendement atteint et dépasse même 85 % dans les conditions moyennes d'utilisation. Ses performances sont surtout dues aux qualités des circuits magnétiques.

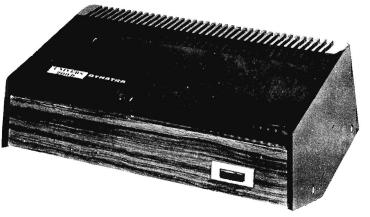
Courbe nº 3 (distorsions) de la figure 7. Le régulateur Univers comporte un circuit correcteur équilibré qui réduit considérablement le taux d'harmoniques et la forme d'onde de sortie est très proche de la sinusoïde idéale. Pour la charge nominale et pour une tension secteur de 25 % supérieure à la normale, le signal de sortie ne comporte que 2 % d'harmoniques et il atteint 3 % dans les plus mauvaises conditions de tension réseau et de charge.

En plus de toutes ces qualités, les composants magnétiques qui équipent le régulateur Univers étant beaucoup plus compacts; celui-ci ne rayonne pas, ne chauffe pas, sa température ne dépasse jamais 60° et son poids est inférieur à celui des anciens modèles de même puissance.

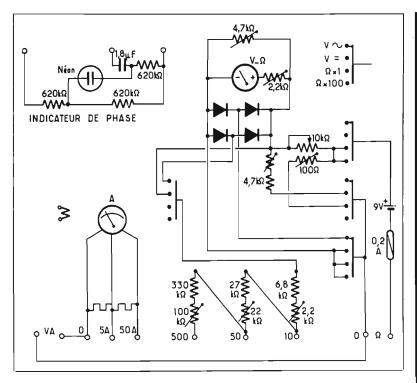

En résume, c'est le régulateur idéal dans tous les cas délicats : télévision, radio, machine à calculer et toute application de l'électronique.

Le régulateur Univers existe en deux modèles.


Le modèle A a 2 entrées 110 et 220 V.
2 sorties 110 et 220 V.
Le modèle B a 2 entrées 110 et 220 V.
Le 220 V.


1 sortie 220 V.

Comme nous l'avons entrevu plus haut pour les resistances CTN et thermistances, les semiconducteurs et avant eux les tubes électroniques ont été utilisés dans les régulateurs (bien timidement, il est vrai). Ils ont été dans la plupart des cas. Page 122 – N° 1392



associés à des inductances saturées commandées ou à des résistances variables. Sur le plan technique ils n'apportent à l'heure actuelle aucun avantage décisif : pour plusieurs raisons. Leur réalisation est onéreuse. elle nécessite une mise au point délicate. Leurs conditions d'utilisation sont bien précises. Ils ne supportent pas de grands écarts de tension de sonctionnement et une erreur de branchement secteur peut entraîner un désastre irréparable. Leur réalisation en série nécessite un tri des composants et ainsi augmente leur prix de revient.

Régulateur de tension Dynatra « Univers 200 B ».

un point de peinture ce qui leur permet de conserver leur valeur ohmmique même après des chocs.

Le galvanomètre est à aimant central. Sa sensibilité est variable en fonction de l'angle de rotation, ce qui explique la graduation non linéaire du cadran même sur les échelles continues. Contrairement à l'ampèremètre, le voltmètre ne possède pas de vis de remise au zéro mecanique de

l'équipage mobile.

L'indicateur de phase qui équipe le contrôleur CM1P est très simple puisque constitué par trois douilles repérées par un code de couleur dont nous n'avons pas trouvé la signification dans la notice! - et reliées à trois résistances, un condensateur et un tube néon. Suivant la phase des tensions amenées à ces trois bornes, la tension disponible aux bornes du tube néon peut être faible ou elevée suivant l'ordre de branchement des fils à un réseau triphasé. Le mode d'emploi de ce contrôleur de continuité et d'ordre des phrases est inclus dans la notice d'emploi.

Ce contrôleur est livre avec un jeu de cordons de mesure comprenant trois cordons de 1 m environ avec pointes de touche, deux cordons avec pince crocodile Muller d'un côté et fiche banane de l'autre, sur cordon court (15 cm) pour l'utilisation en voltampéremètre. Comme accessoire, non fournis avec le CMIP nous trouvons des adaptateurs secteur DIN et américain, une housse de transport avec compartiment à cordons, une pince transformateur qui permet d'étendre les calibres d'intensité à 150 et 500 A à pleine échelle.

Conclusions. Cet appareil est d'un emploi extrêmement simple et la présence de deux appareils de mesure dans un même coffret est un atout supplémentaire. Bien-sûr, on pourra regretter le petit nombre de gammes de cet appareil. Il ne s'agit pas d'un outil de laboratoire mais d'un instrument de travail indispensable à tout dépanneur en électricité, domestique ou industrielle.

LAMANT Hi-Fi STÉRÉO

107, AVENUE MARCEL-CACHIN

SOUS-BAGNEUX - 92320 ● TEL.: 735-52-94

3003-DA	31VEUX - 32320 • 1E	L. ; /39-92-94
PLATINES		Avec Couv. L 85
SANSUI AU101 18 W 1 09D	AU555 33 W 1646 AU666 45 W 2219 AU999 70 W 3040 ESART PA20 20 W 1056 E100 S2 25 W 1296 E150 S2 30 W 1530 2355 15 W E250 S2 50 W 2256 250S 30 W	/ 895 1060 30 W 1 990

AMPLI-TUNERS	2245 4 445	PO-GO-FM 350 L.
	2270 5 895	Prix 2 090
MARANTZ	SANSUI	1000X 2 758
2215 2 300	210 1 598	2000X 2 980
2230 3 295	310 1 990	Six
		Seven 4 370
•	BANG & OLUFS	EN Eight 4 980
1 9 3 4 3 8	BO 901 PO-GO-	FM ESART
- I to a straight of	(20 W)1 8	332 Pat 20 2 096
- 25 : 15 of 15 \$ 15. ° 2	🚂 , BU 3UUU 2 3 1	
- # : : : : : : : : : : : : : : : : : :	B0 4000 3 9	RESEARCH 5 170

TUNERS Esart - Sansui - Scott - Marantz - B		1 200
ENCEINTES ACOUSTIQUES	AR2AX B 1 200	303 AB 980
ERELSON	AR2AX N 1 400	303 AX 1 200
1) 10 W 145	AR3A B 2 380	KEF
2) 15-20 W 295	AR3A N 2 650	Chorale 696
SANSUI	LST 5 950 MARTIN	Cadenza
SP30472	Signature 470	Concerto 1 396
SP50	Micromax 610	SCOTT
ACOUSTIC RESEARCH	Supermax 860	\$17 525 et autres modèles
AR7 530	Laboratory 2 1 090	SIARE
AR4X brut 620	Crescendo 1 590	X2
AR6B	ADC 700	PX20 305
AR6 nayer 850	404 A 700	PX30 Fugue

MAGNÉTOPHONES WAGNÉTOPHONES HI-FI Uher - Telefunken - Revox (Platine 3150) Akai - Bang & Olufsen. Aux meilleurs prix.

		CASCIO	E9 HIFI	
١	KOSS		ESP6A 605	SH19 172
1	К6	145	ESP9 1 055	SH40 215
	K0727	220 285	BISSET BST HS11 43 SH30 73 SH07 86	SANSUI SH10 256 SH20 328
			SH600 114 SH22 149	

CELLULES	
CELLULES ADC	ORTOFON & EMPIRE
220X	SHURE - GRADO (aimant induit)
220XE	FTR
550XE	FTE
Almant 10 EMK IV	F3E
Induit visas	F2
Indut XLM	F1

ACCESSOIRES HIFI - Bras dépoussiéreur

- Ampli casques 137 Rouleau antistatique
- Rallonges et adaptateurs casques

CONFECTIONS DE CORDONS MAGNÉTOPHONES POUR TOUS APPAREILS

LES MESURES EN TÉLÉVISION

I. - APERÇU GÉNÉRAL SUR LES MESURES A EFFECTUER

GENERALITES

E contrôle des bases de temps d'un téléviseur s'opère toujours avec un oscilloscope, bicourbe de préférence pour les essais en TV couleur. La recherche d'une panne, la mise au point, s'effectuent en recherchant en différents points du schéma les formes types de tensions.

En effet, tous les téléviseurs ont, à peu près, le même schema théorique; aux amplitudes près, on retrouve donc presque toujours les mêmes formes de signaux. Seules les amplitudes peuvent différer. L'important est de reperer les points de mesure dans le câblage du châssis ou sur la plaquette imprimée et de faire fonctionner l'oscilloscope dans les meilleures conditions possibles. Pour ce faire, le dépanneur doit posséder presque obligatoirement le schéma théorique du téléviseur « couleur ». On ne saurait trop lui déconseiller de se lancer dans un dépannage de bases de temps sans la pos session de ce plan et, à plus forte raison si l'opération a lieu chez le client.

Lorsque le dépanneur connaît bien une marque, il est assuré de rencontrer toujours la même base de temps. Il est alors sage de faire un relevé d'oscillogrammes types sur un appareil en parfait état de marche. Les Page 128 — N° 1392 comparaisons, en cas de panne, s'averent alors des plus aisées.

A titre documentaire nous donnons figure 1 quelques oscillogrammes relatifs à un télé viseur « N. et B. » de 61 cm assez classique pour qu'on puisse le rapprocher d'autres marques. Le type d'implantation se complique un peu avec les TV « couleur» et il vaut mieux ajouter des bloc-diagrammes au schéma précédent, dans ce cas on groupera par fonction : circuits de décodage, de convergence, de THT, etc. Pour commencer, nous nous attacherons à bien comprendre le mode des relevés d'oscillogrammes dans un téléviseur N.

Le téléviseur est de préférence attaqué par une mire électronique (image stable, par exemple : une mire « à carreaux »). A défaut on utilisera une mire de l'O.R.T.F. (réception sur antenne). L'oscilloscope devra posséder une synchronisation fonctionnelle (sélection de synchro. TV « Trame » ou TV «lignes») afin de stabiliser les signaux soit sur la période d'image soit sur celle des lignes. En absence, de telles sélections, on peut synchroniser extérieurement en prélevant sur le téléviseur à tester soit des tops de synchronisation « image » soit des tops « lignes » (Fig. 2). Les opérations qui restent à faire dépendent du mode d'emploi du balayage de l'oscilloscope (durée,

amplitude, stabilisation de l'image à la limite du déclenchement et loupe horizontale pour dilater éventuellement l'image).

Certaines mesures nécessitent l'emploi de sondes atténuatrices car, en général, les oscilloscopes ne supportent guère plus de 300 Vcac (sensibilité verticale : 50 V/cm, pour la plupart des marques). Or, avec les tubcs électroniques certaines tensions dépassent le millier de volts. Il sera également sage de prévoir un condensateur en série afin de bloquer la composante continue.

Pour les fortes tensions, on pourra avantageusement employer la sonde THT de la fi gure 3. Il faut alors multiplier par dix l'amplitude des oscillogrammes mesures sur l'ècran. Cette sonde est calquee sur des sondes à haute impédance d'en tree mais on fractionne ici la résistance serie afin d'éviter des claquages.

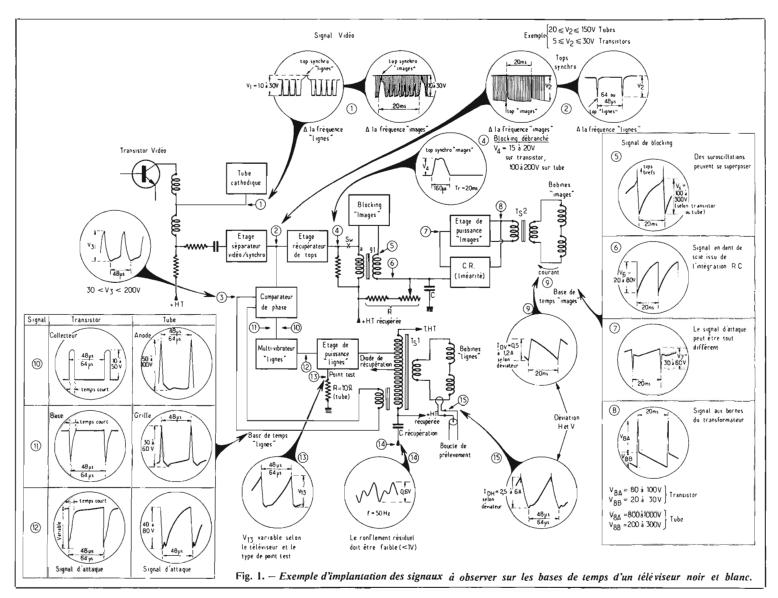
II. – RELEVE DU DOSSIER DE MESURE PROCESSUS

Pour un téléviseur donné, on relève toutes les formes de signaux existant au long de la base de temps. Celle-ci se partage en 3 parties essentielles :

La synchronisation.

La déviation « ligne » (et la THT).

La déviation « images »

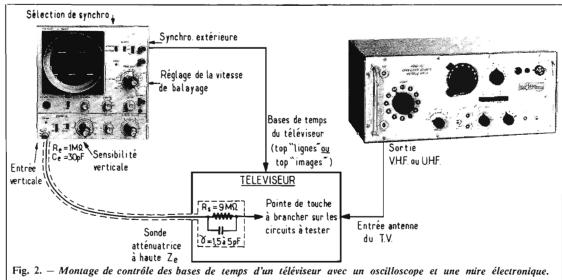

En TV « couleur », on ajoutera la convergence et le matriçage. Nous développerons ce sujet dans un prochain numéro. La première mesure consiste à regarder si la tension appliquée au tube cathodique est valable : ou se dosc un niveau de contraste voisin de celui usité normalement pour l'observation d'un programme TV.

On obtient alors les oscillogrammes nº 1 de la figure 1.

Les signaux peuvent être légérement intégrés par l'apport de capacité due à l'entrée verticale de l'oscilloscope. Au besoin, on se munira d'une sonde à haute impédance d'entrée (voir figure 2).

ETAGE SEPARATEUR

La suite logique de l'investigation conduit à la vérification de l'étage de séparation. Cet étage sépare les tops de synchronisation de la video : on doit obtenir à la sortie de cet étage un train d'impulsions « lignes » avec des séquences de tops « li gnes » inversés correspondant à la séquence trame (625 l.) ou des coupures franches à la fréquence «trame» (819 lignes: voir oscillogramme 2. Après le premier séparateur aucune vi deo ne doit subsister sans quoi des déplacements par paquet



ou des «frisettes » apparaissent au long des lignes sur l'écran du TV. Quelques modulations peuvent apparaître (comme c'est le cas sur la figure 1-2) mais elles ne doivent résulter que d'une cause extérieure au signal (ronflements, inductions...); les circuits, qui suivront limiteront ce défaut au maximum.

ETAGE RECOUPEUR

Le circuit « recoupeur » a pour but de séparer les tops « images » des tops « lignes » ; nous n'évoquerons pas ici, le moyen pour y parvenir, le contrôle à la sortie doit seulement mettre en évidence un top isolé se répétant tous les 20 ms. L'amplitude peut varier beaucoup avec le type de TV selon qu'il est à tubes à transistors ou à circuit intégrés.

Attention! Cette observation n'est possible que si l'on débranche le circuit generateur de déviation (blocking par exemple) car, en général, ce genre de circuit par son mode d'oscillation ajoute son signal à celui qui le synchronise (signal 4).

COMPARATEUR DE PHASE

Du côté synchronisation « lignes », on trouve toujours un comparateur de phase; les signaux à contrôler sont triple :

1° Les tops de synchro, lignes vus en 2.

2º Le signal d'alimentation à comparer avec le précédent (signal 3 provenant du transformateur de THT (sortie « lignes »).

3º Le signal de commande qui en fait se resume a une compo-

sante continue variable en amplitude et en signe selon qu'on s'éloigne du point de synchronisation optimal. Le contrôle à l'oscilloscope ne se fait donc pas. Au voltmètre électronique on ne doit constater aucune tension, à moins que le multivi-

brateur nécessite une tension de repos (cas des transistors montes en multiviprateur astable à couplage d'émetteur).

MULTIVIBRATEUR « LIGNES »

Les signaux à prélever sur le multivibrateur « lignes » se rapprochent en forme et en amplitude de ceux encadrés figure 1-11 à 12. En fait que le multivibrateur soit à tubes ou à transistors, on ne retiendra survants :

I° La forme se rapproche d'une onde rectangulaire dissymétrique.

2º Le rapport cyclique est tel qu'une alternance reste très courte devant le reste de la période. Cet intervalle est le retour de ligne lequel réagit sur l'amplitude de la THT et sur la déviation horizontale.

DEVIATION HORIZONTALE

La déviation horizontale peut se contrôler par ailleurs sur un point test qui est généralement disposé sur le dernier étage « lignes » (signal 13). La tension dépend en amplitude de la valeur de la résistance qui est mise en série avec le circuit de déviation (côté primaire du transformateur de sortie Ts₁); cette résistance peut être la résistance de cathode du tube de puissance ou celle que l'on place parfois en série avec l'emetteur du transistor ou avec le thyristor qui assume la commutation.

DEVIATION « IMAGES »

La déviation « Images » (verticale) requiert souvent l'usage d'un oscillateur blocking. Son bon fonctionnement est le garant d'une bonne déviation verticale; on retiendra que sur l'anode (tube) ou le collecteur des (transistor) impulsions relativement caractéristiques et d'assez grande amplitude rendent vulnerables les enroulements du transformateur ou même le collecteur du transistor qui les cree. Brancher un fil pour l'oscilloscope est assez délicat : une sonde s'avère nécessaire. Des suroscillations peuvent se superposer sans dommage à la montée intégrée. Des tops bress de très grande amplitude (quelques centaines de volts) peuvent aussi apparaître sur les blockings à tube : ils sont limités par des diodes sur les équipements à transistors.

Sur le système d'intégration RC, des dents de scie intégrées de 20 à 80 V alimentent l'étage final, mais l'on ne s'étonnera pas de constater après les circuits de linéarité des signaux très différents. Les corrections sont choisies de telle sorte qu'en Page 130 – N° 1392

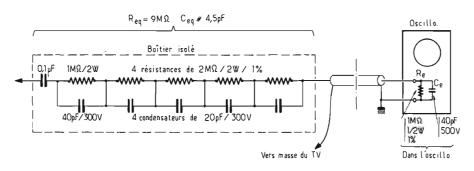


Fig. 3. - Sonde THT affaiblissant de 1/10° environ ± 6 %.

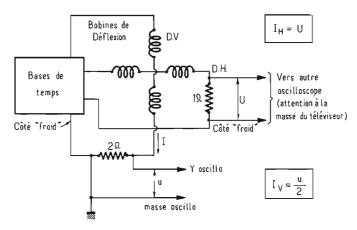


Fig. 4. – Montage classique pour observer à l'oscilloscope les courants de déviation.

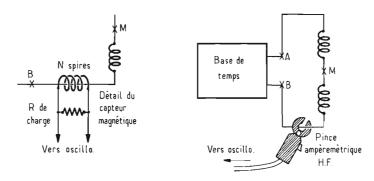


Fig. 5. - Utilisation d'un capteur magnétique (affaiblissement = N).

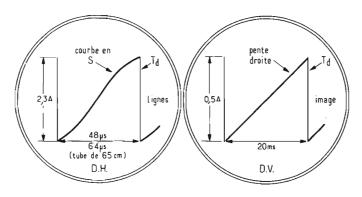
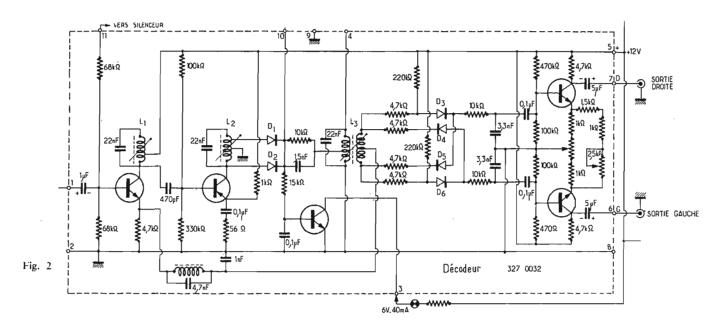
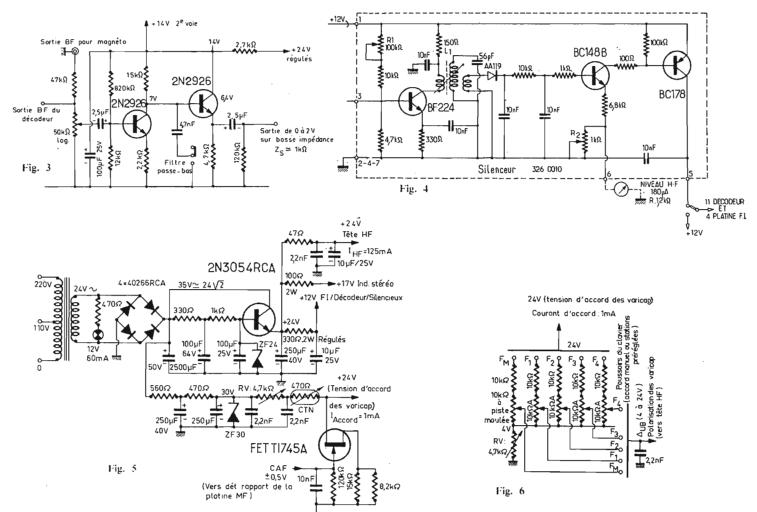
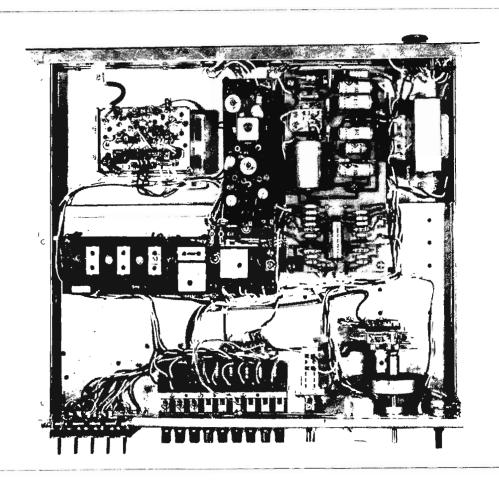




Fig. 6. — Allure des courants de déviation. Les temps de descente sont de $\tau d = 0.5$ ms pour DV, $\tau d = 5$ μ s pour DH (valeurs très approximatives et dépendant d'un téléviseur).

Le premier transistor NPN monte en émetteur commun amplifie ce signal. Un potentiomètre ajustable R₁-100 k\Omega dans la base de celui-ci permet de régler le gain.

Le collecteur est chargé par


le transformateur L₁ et la diode AA119 sert de détectrice.

La tension continue est transmise à la base du deuxième transistor NPN qui est ainsi polarisé.

Ce NPN associé à un troisième

transistor PNP permettent à l'aide d'un galvanomètre d'indiquer la valeur du champ électrique.

Nous remarquons egalement une deuxième ligne d'alimenta tion pour la tension d'accord des varicaps. A partir du + 33,6 V, un filtre RC abaisse cette tention à 30 V, tension qui est alors stabilisée par la zener ZF30. Deux résistances variables en série permettent de règler exactement le potentiel à + 24 V.

Circuit d'accord et de présélection (Fig. 6).

Il s'agit de simples réseaux résistifs, la tension d'alimentation des diodes varicap variant en fonction de la position des cur seurs des potentiomètres de $10~\mathrm{k}\Omega$.

- Présentation de l'appareil.

L'interconnexion des différents modules ne pose pas de problème, le câblage est aéré. Les platines sont fixées au châssis métallique et surélevées par des entretoises.

Pour ceux qui feront l'acqui sition de ce tuner en kit, ils seront certains, une tois le cablage ter miné et vérifié, d'obtenir d'excel lents resultats a l'ecoute, les pla tines étant livrées préréglees.

- Note d'écoute.

Associé à un amplificateur de qualité fonctionnant en classe A et chargé par des enceintes Elip son B550/2, ce tuner Centaure a tenu ses promesses. L'écoute des quatre émetteurs FM est agréable, sans distorsion, no tamment pour la retransmission des S souvant sifilants avec les récepteurs FM.

■ TUNER FM « CENTAURE •

Equipé des fameux modules

Caracteristiques

- Extraordinaire sensibilité : (0,7 µV à S B de 30 dB).
- Rapport signal-bruit : jusqu'alors inaccessible
- Préampli de sortie au SILICIUM avec filtre passe-bas.
- 5 stations préréglées par touches.
- Alimentation électronique stabilisée.
- Vu-mètre d'accord.
- Silencieux commutable

- Sortie magnétophone.
- Cadran à grande course d'aiguille, entrainement gyroscopique.
- Recherche des stations par diode photoluminescente.
- Calage des stations par 5 potentiomètres à glissière.
- VU-METRE s'allumant en présence d'une émission stéréo.

En « KIT » COMPLET

980 F

EN ORDRE DE MARCHE : 1 150 F

42 bis, rue de Chabrol - PARIS-Xº

Tél.: 770-28-31

C.C.P. 77.25.44 PARIS

ÉMETTEURS B.C. 604

DISPOSONS DE 1 500 POSTES ÉMETTEURS «B.C. 604» SANS GÉNÉRATEUR, MAIS EN BON ÉTAT

A VENDRE

L'UNITÉ : 30 F plus frais de transport par Calberson

Commandez à :

P.V.R. 10, RUE GABRIEL-PERI - (76) LE HAVRE

VIENT DE PARAITRE

LES GADGETS ÉLECTRONIQUES et leur réalisation

par B. FIGHIERA

L'électronique fait de plus en plus d'adeptes. L'intention de l'auteur avec cet ouvrage, une fois de plus, est de permettre au lecteur de s'initier à la technique moderne de l'électronique.

Une des meilleures méthodes d'initiation consiste à réaliser soi-même quelques montages simples et amusants tout en essayant de comprendre le rôle des divers éléments constitutifs. A cette fin, les premières pages de cet ouvrage sont réservées à quelques notions techniques relatives aux composants électroniques, le lecteur n'aura donc nul besoin de chercher ces notions dans d'autres livres.

L'auteur est un jeune qui s'adresse à d'autres jeunes et qui se met en conséquence à leur portée. Le sujet lui-même reste du domaine de la jeunesse qui cherche dans l'électronique un moyen d'évasion. Les lecteurs trouveront donc dans cet ouvrage la description complète et détaillée de vingt-cinq gadgets inattendus comme le tueur de publicité, le canari électronique le dispositif anti-moustiques, le récepteur à eau salée, etc.

En d'autres termes, l'électronique et ses applications dans les loisies

Ouvrage broché de 152 pages, nombreux schémas. Couverture 4 couleurs, laquée — PRIX : 17,90 F

En vente à la

LIBRAIRIE PARISIENNE DE LA RADIO 43, rue de Dunkerque - 75010 PARIS

Tél.: 878-09-94/95 C.C.P. 4949-29 PARIS

ÉLECTRONIQUE ET AUTOMOBILE

'APPAREIL présenté combine un autoradio à un lecteur de cassettes, et permet de recevoir deux gammes en AM. et une gamme FM, avec deux stations préréglées. Cette formule est l'un des aboutissements des tendances, actuelles qui semble serrer au plus près les désirs de la majorité de la clientele. Les caractéristiques générales sont bonnes et le constructeur grâce à l'utilisation d'un haut parleur de 2.15 \(\Omega \) tire une puissance basse fréquence importante de ce récepteur.

CARACTERISTIQUES

Le constructeur ne communi que que des informations frag mentaires ce qui est bien regrettable.

Le récepteur comporte trois gammes d'ondes, PO, GO, FM. Deux touches prérèglées sont ca lées sur Radio Luxembourg et Europe 1. La puissance de sortie est donnée pour 8 W, sur charge de 2,15 \(\Omega\$.

Le lecteur de cassette est au standard international, de vitesse 4,75 cm/s et il comporte une touche de défilement avant rapide.

Deux voyants lumineux de couleurs différentes signalent le changement de source, radio ou cassette.

Le fonctionnement est monophonique, une commande de cor rection de tonalité agit en filtre passe-bas.

L'alimentation est prévue uni quement pour une tension de 12 V négatif à la masse.

L'encombrement est de 178 \times 48 \times 165 mm, pour un poids de 1,450 kg.

PRESENTATION

L'aspect de la face avant est tout à fait classique, elle répond au canon européen. Nous trouvons à gauche le bouton de commande de l'accord, qui surmonte les cinq touches du clavier de sélection de gammes et des stations préréglées. Au centre, le cadran se reduit à une bande de faible largeur: il est gradué en longueurs d'onde pour les gammes AM, en fréquences pour la FM. Le loge ment de la cassette est situé sous le cadran. Le lecteur se met en route lorsque la cassette est poussee au tond de son logement. La mise en route n'est toutefois assurée que lorsque le contacteur ar rêt marche est en service: celui-ci est situé à droite, couple au potentiomètre de volume et le correcteur de tonalite est situé au même endroit. Une touche placée au bas de la face avant, à droite de l'emplacement de la cassette permet le défilement rapide et écarte

la tête de lecture et le galet presseur de la bande pendant cette séquence.

L'extraction de la cassette s et fectue en poussant vers le bas la languette qui surmonte le loge ment de celle ci.

A l'arrière sortent à travers des passe fils les cordons alimentation et sortie H.P. A noter que le cordon alimentation à raccor der au plus est de couleur noire, ce qui n'est pas judicieux, mais peut être que la normalisation im pose cette couleur, car plusieurs constructeurs font de même!

Les trimers antenne et stations prérèglées sont accessibles par des trous places sous l'appareil. L'encombrement est réduit, l'appareil peut être encastré sans difficultés.

REALISATION

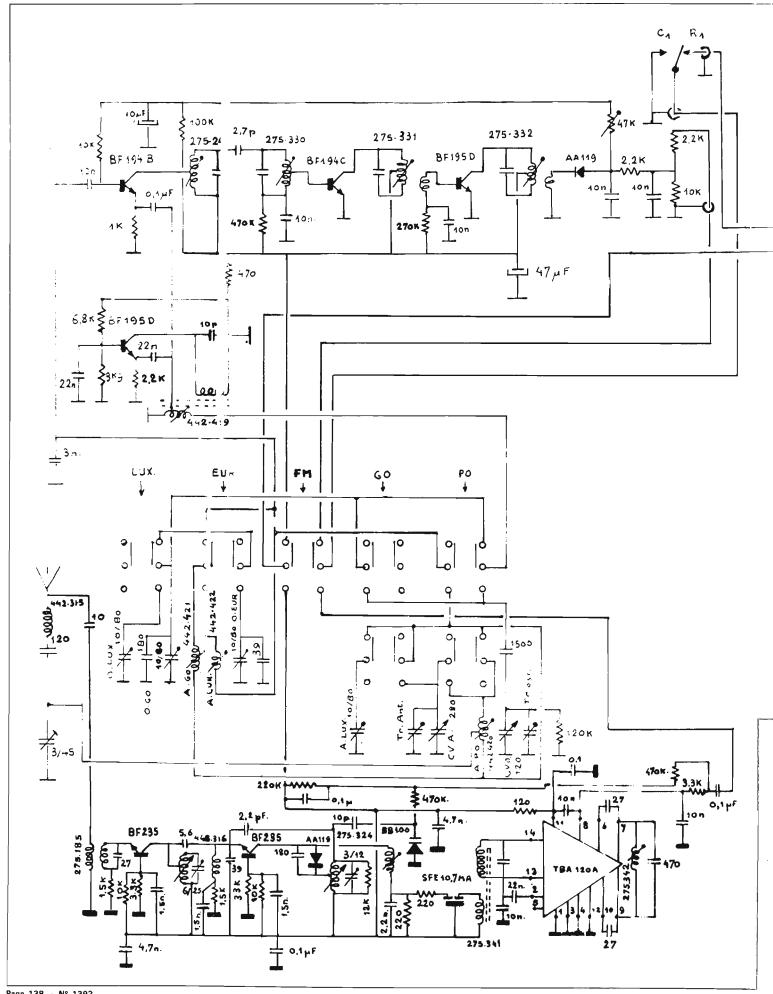
Les circuits sont disposés grou pés par fonctions sur des circuits imprimés : circuits FM, circuits AM, bloc basse fréquence, régulation de vitesse moteur.

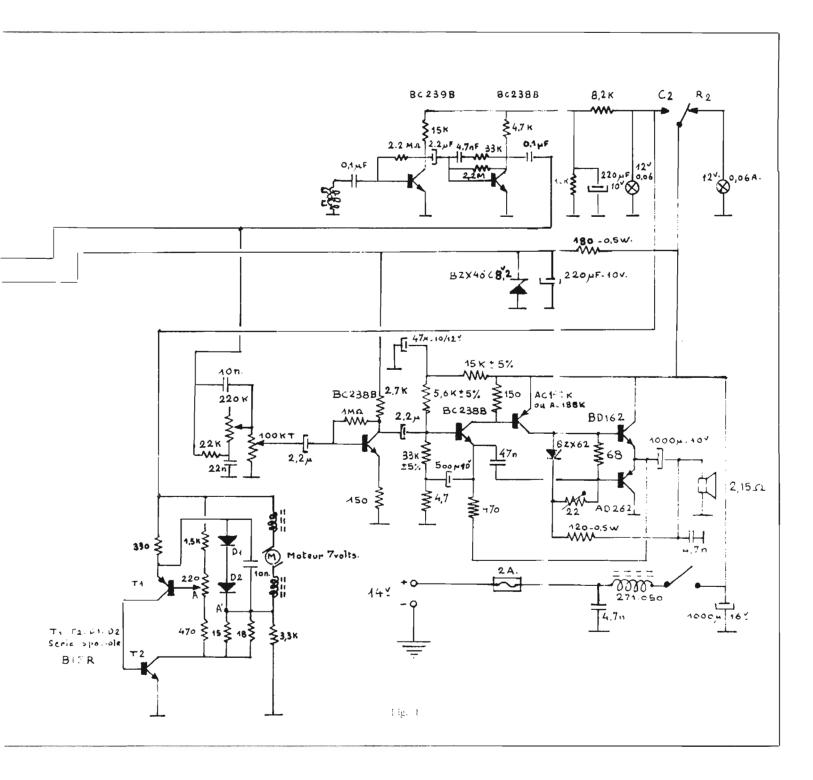
L'accord est réalisé à l'aide de condensateurs variables en AM. de variomètres en FM, et la com mande est bien réalisée mécani quement. Le constructeur a sé paré les fonctions AM et FM; nous avons deux blocs indépendants. Le bloc FM comporte un circuit intégré qui remplit les fonc

tions d'amplificateur FI et discri minateur, avec à son entrée un filtre céramique permettant d'ob tenir une bonne sélectivité.

Le bloc basse fréquence com porte le préamplificateur de lec ture raccordé à la tête. Le méca nisme du lecteur est d'un type classique, mais le constructeur a porté grand soin au choix du mo teur, et à la régulation de vitesse électronique. La vitesse est ajus table, mais le réglage n'est pas accessible, bien entendu par l'usa ger.

La technique et la technologie sont classiques et éprouvées.


DESCRIPTION DES CIRCUITS


(voir schema Fig. 1)

Ainsi que nous l'avons indiqué, le constructeur a utilisé deux blocs haute fréquence séparés pour l'AM et la FM. Cette solution est la plus judicieuse, car elle évite toute interréaction d'éta ges FI communs et si elle est d'un prix un peu plus élevé, les avan tages procures sont importants. En fait ce sont deux récepteurs sépares.

Bloc FM. - Les composants utilisés sont peu nombreux, grâce au circuit intégré multifonctions employé, et les réglages réduits à l'ajustage des trimmers.

Nº 1392 - Page 137

Les signaux arrivant de l'antenne traversent un condensateur de 10 pF et sont appliqués à un transformateur utilisé en filtre de bande. Le secondaire est relié au circuit émetteur du transistor amplificateur HF BF235, monté en base commune. Un circuit accordé par un variomètre constitue la charge collecteur de cet étage: le couplage à l'étage suivant est assuré par un condensateur de 5,6 pF. Le second étage, transistor BF235 remplit le rôle de changeur de fréquence et fonctionne en base commune. Le signal parvient sur l'émetteur, et une trappe accordée sur la fréquence intermédiaire rejecte à cet

endroit les signaux indésirables sur cette fréquence. La fréquence de l'oscillation locale est asservie par un signal d'AFC qui agit sur la diode à capacité variable BB100. La réaction est obtenue par le condensateur de 2,2 pF, placé entre collecteur et émetteur. Le signal de fréquence intermédiaire recueilli est ensuite couplé au filtre céramique SFE 10,7 mA, qui assure à lui seul la sélectivité FI. En sortie du filtre, un transformateur assure le couplage au circuit intégre TBA120A qui assure l'amplification FI avec son CAG, la détection des signaux basse fréquence, et fournit le signal

continu de correction automatique de fréquence.

Les signaux détectés sont ensuite dirigés après commutation, vers le bloc basse fréquence.

Bloc AM. — Les signaux issus de l'antenne sont appliqués après commutation sur l'étage changeur de fréquence, transistor BF194B, monté en émetteur commun. Celui-ci reçoit le signal de l'oscillateur local, transistor BF195D, par un couplage à travers un condensateur de 0,1 μF sur son émetteur. Le signal FI est alors amplifié par deux étages, transistors BF194C-BF195D, puis les signaux sont détectés par la diode AA119 qui fournit également le

signal de CAG, dosé par le potentiomètre ajustable de 47 k(2) et appliqué sur la base de l'étage d'entrée.

Le signal basse fréquence est ensuite dirigé vers l'amplificateur BF après commutation. La tension d'alimentation des circuits AM et FM est stabilisée par une diode Zener de 8,2 V.

Bloc basse fréquence. — Le préamplificateur de lecture est de conception très simplifiée. Il est constitué par les deux transistors BC239B montés en émetteur commun directement reliés à la masse. L'alimentation n'est assurée qu'à la lecture.

«6 ANS DE MATHS EN 6 MOIS»!

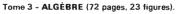
MATHÉMATIQUES EXPRESS

par Roger CRESPIN

Voici un ouvrage de mathématiques « pas comme les autres ». Partant du certificat d'études primaires, il vous conduit en un temps record et sans fatigue jusqu'au bout des « maths spéciales ». Abondamment illustré, souvent amusant, toujours intéressant, il enseigne avec le sourire et se lit comme un roman.

Avec lui, l'étude assommante des mathématiques devient passionnante comme un jeu. Vous serez étonné d'apprendre si vite et si aisément ce qui vous semblait inaccessible. Nul besoin « d'être un crack » : avec un peu d'intelligence et un bien faible effort, vous jonglerez bientôt avec les hautes mathématiques aussi facilement que vous faites aujourd'hui un compte de voyage ou une règle de trois.

MATHÉMATIQUES EXPRESS est la providence des élèves brouillés avec les maths ou déroutés par les cours touffus et pédants, des parents qui veulent suivre ou aider le travail des enfants, des enseignants et des techniciens qui veulent compléter leurs connaissances ou se recycler, de tous ceux qui veulent pouvoir lire la presse technique sérieuse. C'est le livre que l'auteur eût voulu posséder quand il avait quinze ans...


MATHÉMATIQUES EXPRESS est publié en 8 tomes dont les 4 premiers embrassent les maths élémentaires (y compris les mathématiques dites modernes) et les 4 derniers les maths spéciales. Ce sont :

Tome 1 - ARITHMÉTIQUE - RÈGLE A CALCUL (104 pages, 46 figures).

Nombres - Fractions - Proportions - Puissances et racines - Logarithmes - Numération binaire - Règles à calcul et leur emploi.

Tome 2 - **GÉOMÉTRIE PLANE ET SPATIALE** (72 pages, 118 figures).

Angles - Triangles - Similitude - Cercle. sécante, tangentes - Polygones - Aires planes - Angles spatiaux - Polyèdres -Sections coniques - Tangences.

Somme, produit, division algébriques - L'équation du 1° degré à une et plusieurs inconnues - L'équation du second degré - Equations binômes et degré quelconque - Equation bicarrée - Déterminantes.

Tome 4 - TRIGONOMÉTRIE ET LOGIQUE SYMBOLIQUE (88 pages, 93 figures). Sinus, cosinus et compagnie, leurs variations et relations - Résolution des triangles plans et sphériques - Symboles du raisonnement - Algèbre de Boole.

Tome 5 - SÉRIES, PROBABILITÉS, VECTEURS, FONCTIONS (104 pages, 69 figures).

Binôme de Newton - Vecteurs - Fonctions diverses, courbes expérimentales.

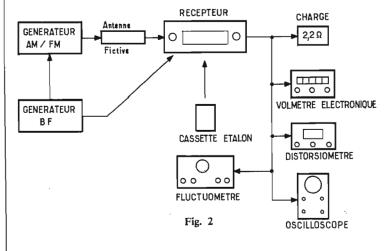
Tome 6 - CALCUL DIFFÉRENTIEL (136 pages, 84 figures).

Limites - Dérivées partielles - Analyse des courbes.

Tome 7 - CALCUL INTÉGRAL (104 pages, 76 figures).

Fonction primitive - Calcul des surfaces - Cubature - Intégrales doubles et triples.

Tome 8 - ÉQUATIONS DIFFÉRENTIELLES ET CALCUL OPÉRATIONNEL (92 pages, 34 figures).


Naissance d'une équation différentielle - Ordre et degré - Transformations de Laplace.

En vente à la

LIBRAIRIE PARISIENNE DE LA RADIO 43, rue de Dunkerque - 75010 PARIS

Tél.: 878-09-94/95 C.C.P. 4949-29 PARIS

(Aucun envoi contre remboursement - Ajouter 10 % pour frais d'envoi à la commande)

L'amplificateur basse fréquence recoit les signaux des différentes sources à travers les potentiomètres de correction de tonalité et de volume. L'étage d'entrée, transistor BC238B, est utilisé en émetteur commun, contre réactionné par la résistance de 1 M Ω . Le second étage, transistor BC238B, assure l'attaque de driver, transistor AC188K puis les signaux sont amplifiés par les transistors complémentaires BD162-AD262. La liaison au HP est assurée à travers un condensateur de 1000 µF, va leur nécessaire pour ne pas constituer une impédance trop élevée vis-à-vis de la charge de 2,15 Ω .

Régulation de vitesse. — Celle ci est d'un type que nous avons eu l'occasion d'analyser précédemment sur le lecteur enregistreur de cartouches Pioneer HR88N, dans le Haut-Parleur n° 1388.

Le moteur est disposé dans l'une des branches d'un pont, constitué par les résistances de 1,5 k Ω , 470 Ω , 15-18 Ω . La tension est nulle à l'équilibre aux points A A'. Toute variation de vitesse entraîne l'apparition d'une tension à ces bornes, tension am plifiée par les transistors T₁ et T₂, qui, selon le sens de la variation, augmentent ou diminuent la tension d'alimentation du pont et regulent le régime moteur. La résistance ajustable de 220 Ω permet d'ajuster l'équilibre pour une vitesse moteur amenant un défilement à 4,75 cm/s. Les selfs disposées en série avec le moteur évitent les remontées des parasites sur la ligne alimentation.

MESURES

Nous avons procédé à toutes les mesures sous une tension d'alimentation de 14 V.

La puissance basse fréquence maximale est de 5,7 W eff. sur charge résistive de 2,2 Ω , à 1 000 Hz. La consommation s'élève alors à 1 A. La distorsion harmonique relevée pour cette puissance est de 1,2 % et la bande passante est de 70 Hz à 8 kHz à -3 dB.

Le rapport signal/bruit en lecteur de cassettes est de 41 dB, la précision de vitesse est de 0,1 % après ajustage.

Bien que le constructeur n'ait pas communiqué d'informations sur ce paramètre, nous avons relevé le pleurage + scintillement, qui sont de 0,26 %, valeur convenable.

La sensibilité mesurée est tout à fait comparable à celle des récepteurs analogues, 2,5 µV pour un rapport S + B/B de 20 dB en FM. 15 µV et 47 µV pour un rapport S + B/B de 10 dB en PO et GO.

ECOUTE

Nous avons monté le récepteur sur véhicule et nous avons accompli notre circuit urbain et routier. La réception en FM a été très confortable pendant un périple qui nous a éloigne jusqu'à 70 km de Paris. Nous avons reçu Rouen, Amiens, FIP FM sans critique notable. En AM la sensibilité utilisable est bonne, la réserve de puissance basse fréquence très importante.

La lecture de cassette est assurée dans de bonnes conditions: le spectre des fréquences enregistrées est bien mis en valeur par l'amplificateur, le souffle est d'un niveau assez bas.

Le mécanisme ne comporte pas de dispositif d'arrêt du moteur en fin de cassette: il conviendra donc de l'éjecter en fin d'audition afin d'éviter au galet de se comprimer inutilement contre le cabestan.

CONCLUSION

Appareil qui est destiné à offrir un maximum de possibilités dans sa catégorie, le RK59 dispose d'une puissance basse frèquence importante. Sa conception est classique tout en faisant appel à des solutions qui n'existent pas sur tous les autos radios, nous pensons à la séparation totale des circuits AM et FM. La réalisation est soignée, les différents constituants homogènes.

fonction de la qualité du transformateur de sortie Ts2, on recherche avant tout la linéarité du courant de déviation. Comme celui-ci parcourt une bobine, la tension à ses bornes, de même que celle du primaire (signal 8) ne peut être linéaire mais affecte la forme très pointue nº 8. L'amplitude est très élevée avec les tubes; nettement moins avec les transistors mais ceux-ci restent néanmoins soumis a de rudes épreuves et l'on comprend que bon nombre de constructeurs conservent les tubes pour effectuer ce travail.

Le temps de la pointe de quelques centaines de volts reste très court : la durée de quelques lignes. Ce temps correspond sensiblement au temps de retour de l'image, temps que l'on doit effacer par ailleurs par blocage momentané de l'anode d'accélération du tube cathodique.

COURANTS DE DEVIATION

Les courants de déviation doivent être par contre très linéaires sauf parfois pour la déviation trame compensant ainsi la platitude de l'écran des

écrans larges.

En effectuant les relevés de courants par les procédés qui seront développés dans le paragraphe suivant, on prendra garde de ne pas couper la liaison, maladresse qui entraînerait la destruction des transformateurs de sortie et des composants qui le jouxtent :

Une surtension nefaste apparaîtrait en effet...

Enfin on peut — et l'on doit! — contrôler les différentes tensions d'alimentation: la présence d'une ondulation est à déconseiller; on la réduira le plus possible.

III. – CONTROLE DE LA LINEARITE DE LA DEVIATION

Un premier contrôle consiste à observer la forme des courants qui parcourent les bobines de déflexion. Pour ce faire, on insère en série dans ces bobines une résistance de très faible valeur (1 à 2 ohms suffisent : Fig. 4). Le courant est alors observé par l'application d'un oscilloscope aux bornes de ces résistances; des tensions, on déduit les intensités :

$$\frac{I_{CAC} = }{\frac{D \text{\'eviation en } V_{CAC}}{R \text{ (en } \Omega)}} \text{ (en Amp.)}$$

Certains oscilloscopes comportent en accessoire une sonde analogue aux pinces ampèremétriques des électriciens, dans ces conditions, il suffit de « pincer » les fils de connexions au déflecteur pour avoir directement la forme des courants (Fig. 5).

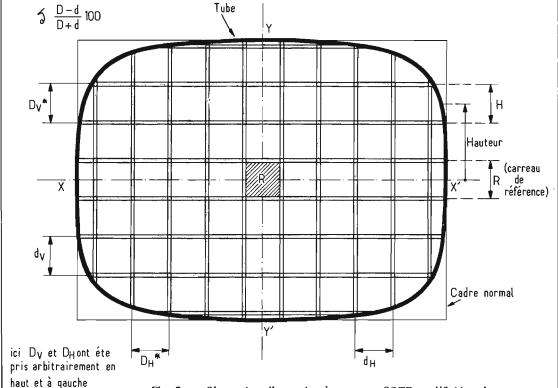
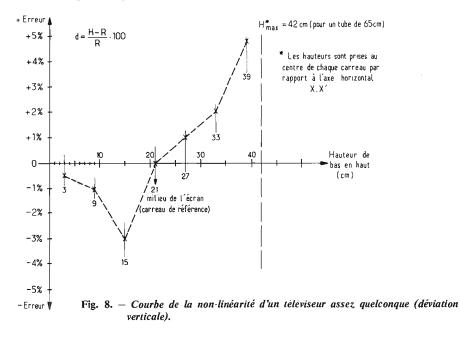



Fig. 7. – Observation d'une mire à carreaux ORTF et définition du taux de non-linéarité.

Une traduction est prévue comme pour les transformateurs d'intensité.

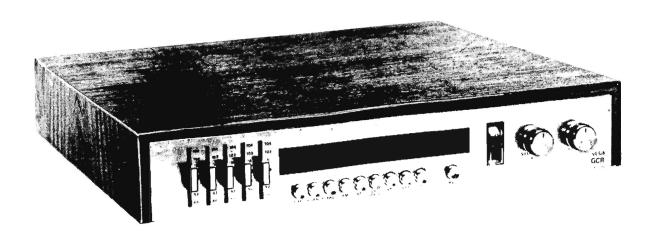
Les courants ont l'allure de ceux de la figure 6. Le courant vertical doit être rigoureusement linéaire. Par contre, le courant horizontal doit présenter une légère courbe en S afin de compenser la variation de trajet du spot aux bords extrêmes du tube cathodique. En fait, la linéarité se contrôle surtout par l'image en comparant les dimensions des carreaux d'une mire en haut et en bas de l'écran ou bien à gauche et à droite.

L'U.T.E. preconise la formule suivante donnant le taux de distortion.

$$\zeta \% = \frac{D - d}{D + d} 100$$

avec D: dimension du grand carreau; d: dimension du petit carreau.

I % $< \zeta < 5$ % sont des chiffres de distorsion raisonnables pour un poste de télévision à grand écran (65 cm).


Mais cette formule ne signifie pas quelque chose de réellement concret lorsque la distorsion apparaît au centre de l'écran. Il est, alors, de beaucoup préférable de tracer des courbes d'erreur de dimensions par rapport au carreau central, sur des axes fictifs portés sur l'écran (Fig. 8).

On juge alors sur l'ensemble de la déviation, correction de linéarité et amplitude horizontale convenablement effectuées, les erreurs ne devant pas dépasser + 5 %.

Roger Ch. HOUZE. Professeur à l'E.C.E. N° 1392 - Page 131

Tuner FM

"CENTAURE"

E tuner Centaure est le der nier des appareils mis au point par la société française Acer. Il s'agit en fait d'une refonte du modèle UK W232 fabrique depuis plusieurs années. Ce modèle est destine à être associé à l'amplificateur Orion, dont une étude a été publiée dans le n° 1325 de notre revue.

Présentation

C'est un appareil extra plat, la hauteur avec les pieds n'étant que de 70 mm. Cette ligne basse semble être à la mode actuellement et séduit bon nombre d'acheteurs.

Comme tous les appareils de cette gamme, le coffret est en teck. La face avant regroupe toutes les commandes, à savoir :

- Cinq potentiomètres à glissières permettant le calage des stations préréglées.
- Un bloc de commutations comprenant 9 touches dont les fonctions sont les suivantes :
- CAF. Cette touche permet un verrouillage très efficace de la fréquence d'accord.
- SIL. Cette touche enclenchée permet une recherche des stations sans souffle et ce entre chaque émetteur.

- FIL. Il s'agit de la com mande d'un filtre passe-bas dont la fréquence de coupure se situe vers 10 kHz, avec une pente d'atténuation de 6 dB/octave.
- MAN. «Manuel», cette touche enfoncée permet une recherche des stations.
- ST 1 à ST 5. Les 5 touches permettent la réception immédiate de 5 programmes présélectionnés par les potentiomètres à glissières.
- Un bouton-poussoir isolé du bloc de commutations sert à la mise sous tension du tuner.
- Un important galvanomètre indique le niveau du signal capté et permet un calage précis sur la fréquence lors de la recherche d'une station (déviation maximale de l'aiguille).
- Un premier bouton sert à la recherche des stations en position manuelle. Un lourd volant en fonte rend agréable cette ma nœuvre.
- Un deuxième bouton permet de doser l'amplitude des signaux de sortie qui sont injectés à un amplificateur de puissance.
- La recherche des stations en manuel s'effectue sur un cadran (que l'on peut trouver un peu discret) fumé et gradué en MHz.

lci, la traditionnelle aiguille a été abandonnée et remplacée par un petit luciole, ce qui est plus attrayant.

 Lors d'une émission stéréophonique, un petit voyant s'allume et éclaire le vu-mètre.

A l'arrière de l'appareil, nous trouvons :

- La prise antenne pour fiche coaxiale (ant. 75 \(\Omega \) asymetrique).
- Une prise DIN 5 broches qui permet de prélever les signaux BF aux sorties gauche et droite du décodeur.
- Une deuxième DIN 5 broches est raccordée aux sorties de deux préamplificateurs, ceux-ci pouvant délivrer des signaux d'amplitude de 2 V.
- Un répartiteur de tension 110/220 V.
- Un fusible dans le primaire du transformateur.

Ce tuner FM est réalisé autour des modules Gorler, ce qui permet d'obtenir d'excellentes performances. Ceux-ci ayant à plusieurs reprises fait l'objet de descriptions, nous ne nous étendrons pas trop longuement.

La tête HF (Fig. 1 A).
 Le modèle employé est le type à varicap, ce qui permet les stations préréglées.

Cette tête HF permet l'utilisation de deux types d'antennes :

- Ant. 300 Ω symétrique. - Ant. 75 Ω asymétrique. Acer a opté pour le type asy-

métrique, ce que nous rencontrons le plus souvent sur les tuners. Il est toutefois regrettable que cet appareil ne soit pas prévu pour les deux impédances sans intervention à l'intérieur du coffret

Cette tête HF est équipée de trois FET et d'un transistor AF124. La polarisation des diodes varicap varie de 4 à 24 V et la tension d'alimentation de cette partie HF est de 24 V.

- Caracteristiques :
- Accord par varicap.
- Gamme : 87,5 à 108 MHz.
- Tension d'accord : + 4 à + 24 V.
- Stabilisation par CTN.
- F.I. = 10,7 MHz.
- C.A.G. incorporée.
- Sensibilité : Ì μ V 26 dB S/B.
 - Entrée C.A.F.

- La platine F.I. (Fig. 1 B). L'amplificateur moyenne fréquence est équipe de 4 circuits

intégrés 7703393. Ceux-ci remplaçant les anciens CI-µA703 en enrobage plastique qui étaient beaucoup plus fragiles.

Grâce aux circuits intégrés, le gain par étage est élevé, de l'ordre de 25 dB. On obtient ainsi avec une grande stabilité une tension détectée élevée (500 à 600 mV) de faible distorsion harmonique

0000000 sym ||-||-**₹**330KΩ 2200 TÊTE موموموم 0000000 **₩** 10 kQ AF 124 2000000 1 27ps 0000000 \$2200 **CORRORNO** (4à 24V polar des varicap) ₹24V tête 000000 **3**H 28000000 FREQUENCE 0000000 % ₹ 2000000 INTERMEDIAIRE 11-11-عمعممع 275 **THEOREM** وووو 00000

avec le meilleur rapport signal/bruit.

Les transformateurs de couplage sont du type à filtre de bande avec primaires et secondaires accordés et enroulement à basse impédance pour attaquer l'entrée de chaque circuit intégré.

Les tensions BF sont prélevées à la sortie du filtre MF constitué par les réseaux $68 \Omega - 82 \text{ pF}$ et $150 \Omega - 82 \text{ pF}$.

Un découplage supplémentaire de 47 k(2 - 0,47 µF est utilisé pour prélever les tensions de la CAF, appliquées sur la tête HF.

Caractéristiques :

- Bande passante FI : 200

- Sélectivité à 100 MHz :
 66 dB.
 - Suppression AM: 50 dB.
- Sortie tension C.A.F. : ± 0,5 V.
- Niveau de sortie BF 50 mV pour 100 µV HF.
- Tension d'alimentation
 + 12 V.
- Le décodeur stéréophonique (Fig. 2).

Ce module est équipé de cinq transistors du type NPN.

Les collecteurs des deux premiers transistors sont charges par les circuits accordés L₁-22 nF pour T₁ et L₂-22 nF pour T₂, il y a amplification des signaux à 19 kHz. Les deux diodes D₁ et D₂ servent de doubleur de frequence par redressement bi-alternance de la tension disponible aux bornes de L₂.

Nous trouvons ensuite le circuit accordé sur 38 kHz comprenant L₃ 22 nF.

Le secondaire de L_3 à point milieu reçoit les tensions G+D et G-D prélevées sur le circuit émetteur du premier étage.

Le démodulateur est équipé des quatre diodes D_3 , D_4 , D_5 et D_6 selon un montage classique. Les tensions BF correspondant respectivement aux voies de droite et de gauche sont ensuite appliquées à un étage préamplificateur de tension T_4 ou T_5 .

Le transistor T₃ charge par la lampe L sert d'indication de stéréophonie. Lors d'une émission stéréophonique avec sous-porteuse à 19 kHz, les tensions de 38 kHz à la sortie du doubleur D₁-D₂ polarisant le transistor dans le sens de la conduction, ce qui fait circuler un courant collecteur qui allume L.

- Caractéristiques :
- Stéréo automatique.
- Niveau de sortie 400 mV.
- Impédance de sortie 10 kΩ.
- Diaphonie à 4 kHz : 37 dB.
- Suppression fréquence pilote : 40 dB.
- Tension d'alimentation : 12 V.

- Préamplificateurs de sorties (Fig. 3).

Chaque canal est équipé de deux transistors NPN au silicium du type très faible bruit.

La sortie BF du décodeur (pour une voie) est appliquée à l'extrémité d'un potentiomètre de volume. Le curseur de celui-ci est en liaison avec la base du premier transistor par un chimique de $2.5~\mu F$. Ce transistor est monté en émetteur commun, le signal amplifié disponible sur le collecteur est transmis directement à la base du second étage (liaison continue) monté en collecteur commun. La sortie se fait donc à basse impédance ($Z_5 = 1~k\Omega$) et le niveau du signal peut varier de 0~a 2 V.

A noter le filtre passe-bas, simple mais efficace. Un condensateur de 4,7 nF dans la base du second étage est mis, par l'intermédiaire d'un commutateur, à la masse.

• Caractéristiques :

Niveau de sortie réglable :
0 à 2 V.

- Sortie en basse impédance :
 # 1 kΩ.
- Filtre passe-bas : 6 dB/ octave.
- Tension alimentation+ 24 V.

- Le Silenceur (Fig. 4).

L'alimentation stabilisée met en œuvre un transistor de puissance du type 2N5295 monté en ballast.

Le secondaire du transformateur de 24 V est redressé par un pont moulé. La tension continue est filtrée par un condensateur de tête de $2\,500\,\mu\text{F}$. Le potentiel est alors de $33,6\,\text{V}$, tension collecteur du $2\,\text{N}\,5295$. La base est polarisée par les résistances de $330\,\Omega$ et I k Ω . Le potentiel est fixé à $+\,24\,\text{V}$ par la zener ZF24. La tension stabilisée est disponible sur l'émetteur du transistor, le potentiel est alors de $24\,-\,0,6$, soit $23,4\,\text{V}$. Cette tension va alimenter les modules décodeur, Silencieux et platine FI.

Le silenceur. Alimentation stabilisée

(Fig. 5).

Le module Silenceur est un dispositif qui supprime, lors de la recherche d'une station en manuel, le souffle qui se manifeste entre deux émetteurs.

Ce module comprend trois transistors dont le rôle est de bloquer l'étage d'entrée du décodeur lorsque la tête HF n'est pas accordée sur une station.

Une prise est prévue sur la platine FI qui permet d'injecter à l'aide d'un condensateur le signal 10,7 MHz.

Fig. 1

RETOUR SUR L'ALLUMAGE ÉLECTRONIQUE

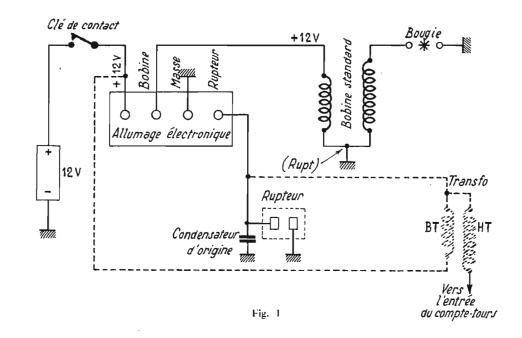
Voir H.P. Nº 1351, 1355, 1360

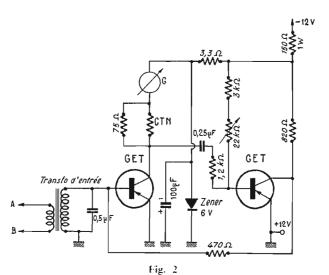
la suite de l'étude et l'analyse d'un système d'allumage électronique, à décharge capacitive dans les numéros du *Haut-Parleur* d'avril, mai et juin 1972, nous avons reçu un courrier que nous pourrions qualifier de volumineux sans fausse modestie! La synthèse des lettres de nos lecteurs a été longue à faire et nous avons classé ces lettres en 5 catégories.

Les demandes de renseignements techniques.

 Les problèmes posés lors de l'utilisation d'un compte-tours électronique.

Les informations complémentaires de mise au point (avance à l'allumage).


 Les pannes (toujours éventuelles !).


 Les compte-tours des utilisateurs.

La plus importante et de loin concerne l'adaptation d'un compte-tours électronique lors de l'uti lisation de l'allumage électronique décrit.

L - LES COMPTE-TOURS ET L'ALLUMAGE A THYRISTOR

L'allumage électronique décrit dans trois numéros du Haut-Parleur (1351 - 1355 1360) connait d'après le courrier reçu en une période de dix mois un succes « intéressant » auprès des automobilistes à la fois passionnés de mécanique et d'électronique. Malheureusement ceux-ci nous ayant très souvent devancés en équipement électro nique par le s'ait d'avoir doté leur véhicule d'un compte-tours, il s'ensuit que parfois une certaine incompatibilité surgit en tre l'allumage électronique et le compte-tours. Certaines irrégula

rités de fonctionnement peuvent être éliminées par de simples modifications du circuit.

a) Compte-tours Jaeger.

Après le montage et l'installa tion de l'allumage électronique les indications données par le compte-tours Jaeger sont erronées et souvent ne dépassent pas les 1 200 tr/mn. Pour éliminer cet inconvénient, il suffit d'insérer le compte-tours dans le circuit secondaire d'un transfo élévateur de tension. Le schéma de la figure I donne l'assemblage pratique du système. Nous n'avons pas encore déterminé les caractéristiques exactes du transfor mateur, mais il semblerait qu'un modèle 220 V - 12 V puisse convenir; l'enroulement 12 V serait monté côté rupteur et l'enroulement 220 V côté entrée du compte-tours. Nous tenons cette information de notre confrère italien « Sperimentare Radio-TV ».

b) Compte-tours Smith.

Les compte-tours Smith ne sont pas généralement utilisés sur les voitures françaises ; par contre ils sont très souvent montés sur les voitures anglaises. La particularité, de ces dispositifs est qu'ils fonctionnent par induction. Les impulsions sont en effet prélevées par couplage inductif. Nous donnons le schéma d'un compte-tours Smith employé sur certaines voitures Ford « Made in England ». C'est bien sûr une version « positif à la masse » (voir Fig. 2). A l'origine le primaire du transformateur d'entrée est placé en série avec le primaire de la bobine d'allumage. Avec l'allumage électronique il faut placer l'enroulement A-B à la façon de la figure 3. L'enroulement A-B est constitué de 2 ou 3 spires de fil de 10/10 sous isolant plastique. Si l'aiguille du compte-tours se déplace dans le sens opposé, il faut intervertir les 2 fils A et B.

c) Compte-tours V.D.O. d'origine allemande.

Sur les Ford Capri : certains de ces modèles sont equipés d'un compte-tours électronique de marque V.D.O. Si nos lecteurs possesseurs de voitures de cette série possedent le schema de l'installation électrique, ils constateront que le compte-tours V.D.O. est à l'origine branché selon la figure 4. Le rectangle dans lequel notre dessinateur a fait figurer une inductance, indique que ce compte-tours V.D.O. est comme le modèle Smith du type inductif. Il faut donc brancher ce rectangle comme sur la figure 3 ou sur la figure 5. Les essais donneront le meilleur branchement.

d) Compte-tours Veglia-Borletti.

Les voitures italiennes (Fiat) sont équipées d'un compte-tours Veglia-Borletti dont nous donnons le schéma à la figure 6. Relié tel quel à la borne rupteur de l'allumage électronique, il cesse de fonctionner normalement.

Afin que le fonctionnement devienne régulier il faut modifier le schéma de la figure 6 en celui de la figure 7.

 1° Eliminer la résistance R_3 de 2,7 k(2) et la remplacer par le condensateur C_1 de 47 nF.

2° Eliminer le condensateur C_1 de 0,22 μ F et le condensateur C_4 de 0,1 μ F de la figure 6.

 3° Enlever C_s/47 nF figure 6, et le remplacer par la diode D₁ (Fig. 7).

4º Mettre entre D₁-C₁ et la masse une résistance R₃ de 12 k(2) celle ci remplace la diode Zener d'origine BZY80.

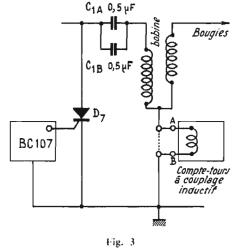
 5° Placer entre le + 12 V et la masse une diode D_{a} .

Les nouveaux composants de la figure 7 ont les valeurs suivantes :

 $C_1 = 47 \text{ nF}/47 000 \rho \text{F} 400 \text{ V}.$ $R_3 = 12 \text{ k}\Omega - 1/4 \text{ W} - 10 \%.$

 $D_1/D_4 = 400 \text{ V} - 30 \text{ A crête gen$ $re BY 127/BY 152.}$

La valeur du condensateur $C_3/0,33 \mu F$ correspond à un moteur 4 cylindres à 4 temps.


2. - L'ALLUMAGE ELECTRONIQUE ET LES VOITURES FORD

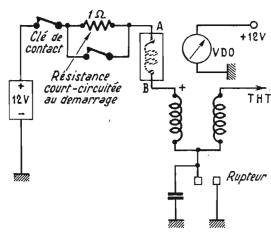
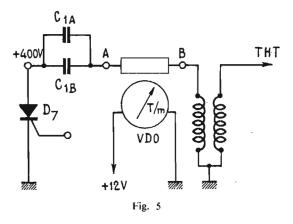
En montant le système électronique sur certains types de Ford on note que le moteur a tendance à s'arrêter quand il tourne à bas régime. Certains ont constaté que ceci se manifeste parce que les bobines d'allumage de ces voitures demandent une alimentation de 6 à 8 V au lieu de 12 V.

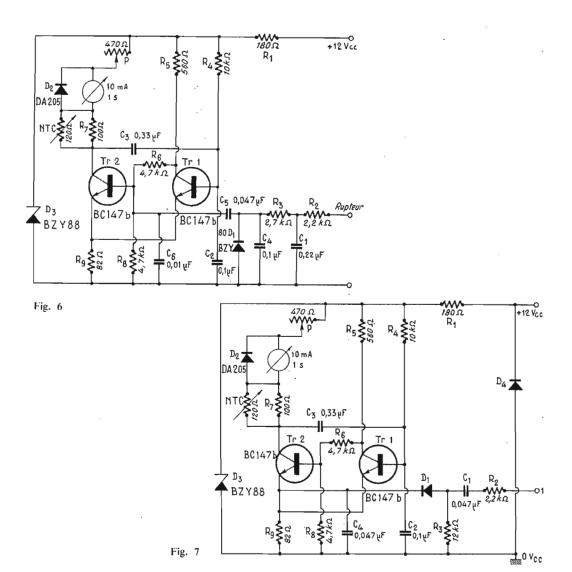
Pour creer la chute de tension necessaire le constructeur a prévu de placer en serie avec le primaire de la bobine une résistance (voir la Fig. 4) lors de l'utilisation de l'allumage conventionnel. En conséquence, pour un fonctionnement correct avec l'allumage électronique, il faut courtcircuiter la résistance.

La méthode consistant à courtcircuiter la résistance au lieu de l'éliminer, est à retenir surtout si l'on veut passer facilement de l'allumage normal à l'allumage électronique.

Les voitures Ford sont construites dans différents pays (U.S.A., Angleterre, Allemagne), sous différentes versions et il

. ig. 5


Fig. 4

nous est difficile d'assurer que ce que nous venons d'écrire est valable pour tous les modèles. Il faut donc essayer l'allumage électronique sans rien modifier, surtout si, à tous les régimes le fonctionnement du moteur est satisfaisant.

3. - RETOUR SUR LE CONVERTISSEUR

Quelques lecteurs possesseurs de voitures de haute cylindrée, capables de tourner sans pro blème à plus de 6 500 tr/mn ont écrit, en signalant qu'à partir

d'un fort regime (5 000 tr/mn) le convertisseur décrochait. En conséquence de quoi il n'y avait plus d'allumage, et que le fait de redescendre en régime audessous de ce palier, redonnait à nouveau un fonctionnement convenable. Nos investigations dans ce domaine nous avaient fait penser au thyristor D, qui pouvait « ne pas suivre ». Cela est vrai pour certains échantil lons de thyristors que nous n'avions d'ailleurs pas conseillés mais que certains amateurs, récupérateurs de l'ond de tiroir, voulaient (pour économiser 25,00 F!!) à tout prix utiliser! Mais cela est une autre histoire : le fond du problème est le conver tisseur. N'ayant jamais utilisé que des 2N3055 de qualité (et de prix), nous n'avons jamais eu de problème. Seuls, ont eu des déboires ceux qui ont adopté des 2N3055 à bas prix et hors marque! Que se passe-t-il dans ces conditions? Ayant des caractéristiques hors standard et manquant en particulier de gain en courant (B), lorsque l'on exige beaucoup du convertisseur à haut régime, celui-ci décroche. L'on peut d'ailleurs s'en convain-

cre en touchant chaque 2N3055 (TR₁ TR₂). Si l'un est normalement tiède, l'autre est brûlant après avoir tourné haut en régime pendant un certain temps (15 mn): le convertisseur est « boiteux ». Il peut (et. c'est là la tromperie!) donner de bons dé parts à froid et l'onctionner correctement à bas et moyen régime.

Donc, en résumé, acheter des 2N3055 de marque (RCA, Sescasem, etc.) est une bonne sécu rité. Bien sûr l'idéal est de les avoir à peu près appariés (nous ne l'avons jamais fait!). Certains lecteurs ont essayé avec succès des BD130 Siemens et des 2N3442.

Concernant le convertisseur, certains nous ont demandé l'équivalent du « 2N3055 »... Quoi leur répondre ??

LE THYRISTOR D.

Le thyristor utilisé par l'auteur est un 2N3525 de RCA. Celuici était initialement prévu pour un gradateur de lumière de construction maison, il y a quel ques années, mais le projet a été réalisé avec un triac et c'est

mieux. Ayant remarque que cer tains confreres américain (Elec tronics Word) et anglais (Wire less World) avaient décrit des réalisations commerciales d'allu mage électronique dotées de ce 2N3525, il fut décide, lors du projet de l'adapter, puisque par hasard, il était dans nos tiroirs. De plus, ses caractéristiques (voir le Haut-Parleur nº 1360) convien nent parfaitement. Au sujet de ce thyristor, certains ont signale qu'il n'existait plus! Pourtant, il figure au catalogue General Elec tric/Sesco.

Etant donné malgré tout la rareté de cet élément nous avons après recherches, constaté que le BTW 27/500R de la Sescosem convenait très bien. Ses caracté ristiques sont les suivantes :

- V_{RSM}: 600 V. - V_{RRM}: 500 V. $- l_{T} : 7,4 A.$

- I_{TSM} : 100 A. - Igt : 15 mA typique : 50 mA lgt

max.

V_{GT} : 0.7 V à 2 V. dv

: 300 V/u max. à 100°C. dt

: 15 mA. : 3º à 4º C/W. Rth

Monté comme le 2N3525 en boîtier TO66. son brochage est donné figure 8. L'auteur indiquera volontiers les adresses où I'on peut se procurer ce thyristor.

5. •• LES DIODES $D_3 \cdot D_4 \cdot D_5 \cdot D_6$

A la page 100 du Haut-Parleur 1360. il était conseillé d'utiliser des diodes 50J2. Nous avions proposé également la BY127 pour ses caracteristiques, c'est-à-dire tenant 1000 V inverse sous 1 A constant. Après essais, il s'avère que la 50J2 est celle qui donne le meilleur sonctionnement du convertisseur. A une vitesse de rotation elevee (> 4000 tr/mn sur la 304), la tension du convertisseur est - avec les 50J2 - de 340 V-350 V. Avec les BY127. la tension passe de 400 V au ralenti à 180-200 V à 4000 tr/mn. La raison exacte de ce fonctionnement incorrect nous échappe. Nous pensons toutefois qu'il s'agit d'un comportement anormal du pont à l'onde « backswing » (voir le Haut-Parleur 1355 pour l'analyse de cette partie).

Lcs diodes 1N4005 ont don né des résultats identiques à la 50J2. Les 50J2 sont disponibles chez la plupart des détaillants parisiens. (Question souvent posée!)

LES DIODES ZENER LEUR ROLE

Si l'un de nos lecteurs avait su choisir ses diodes Zener, il n'aurait sûrement pas grillé autant de thyristors « qu'un évêque peut en bénir!» Le rôle exact des diodes Zener ZD, et ZD2 (Fig. 5 et 6, du Haut-Parleur 1351) est bien d'écrêter les impulsions ou pointes de tension de fréquences, de récurrence très courtes qui se superposent à la tension en creneau disponible aux bornes de l'enroulement secondaire. La forme de l'onde disponible au secondaire est un créneau dont l'amplitude est de 400 V (+ 5%) crête à crête. S'agissant d'une tension en créneau il n'est pas question de multiplier par $\sqrt{2}$ pour obtenir la tension continue. Il faut se rappeler en effet, que le convertisseur n'est pas du type sinusoïdal, mais que fonctionnant par tout ou rien (TR₁ bloqué - TR2 conduit) il donne un signal carré dont les overshoot inévitables avec une charge inductive, sont « coupés » par les diodes Zener ZD, et ZD2. Il en subsiste, et c'est ce qui explique que l'on ait + 350 V C, en l'air et + 400 V C₁ a la masse pendant les essais.

Le role secondaire des diodes Zener est d'autoréguler (avec $R_{\rm o}$) la tension de sortie (+ 400 V) en fonction de la tension de la batterie. Celle ci peut présenter jusqu'à + 13.5 V avec les véhicu les dotés d'alternateurs.

Ceux qui désireraient (par cause de non approvisionnement) se passer de ZD₁ et ZD₂ pen dant les essais peuvent rempla cer R₅/3.3 M₁₂ par une résis tance à ajuster, de l'açon à obtenir + 400 V à la sortie du pont. La valeur peut osciller entre 200 k₁₂ et 470 k₁₂ (ordre de grandeur). De toute taçon ils ne profiteraient du rôle d'auto régulation de ZD₁ et ZD₂.

Les types convenables sont : BZY88/C27. BZX85/C27. Ce sont des diodes Zener de 27 V $400~{\rm mW}~-5~{\rm G}_{\rm 0}$.

7. - LE TRANSFORMATEUR T.

Quelques lecteurs ayant réalisé eux mêmes le transformateur du convertisseur ont écrit en de mandant quelques précisions sur les tensions secondaire et primaire. Pour controler ces tensions, il taut brancher l'enroule ment 240 V sur le secteur (220

à 240 V) et à ce moment mesurer la tension aux bornes de chaque demi primaire.

Pour 230 V · 240 V de ten sion secteur (valeur courante en banlieue parisienne), il l'aut me surer **a vide**, 8 V alternatifs aux bornes de chaque demi primaire. Ces mesures ont èté contrôlées avec Métrix 430 20 k:2/V = et \(\infty\) Le transformateur T₁ est toujours disponible à l'adresse indiquée dans le *Haut-Parleur* n° 1355, ceci pour répondre à du courrier récent.

8. – L'AVANCE A L'ALLUMAGE

Si l'avance à l'allumage de mande une certaine précision dans les reglages, une plus grande souplesse de ceux ei est obtenue avec l'allumage électronique. Avant écrit que la retouche a l'avance était inutile, il faut faire un pas en arrière et reconnaître apres essais pousses, qu'il en est tout autrement. Le compte rendu précis de Claude B. de Bondy (R 16 TS) confirme les constata tions de l'auteur. Ce lecteur nous précise qu'une fois monté sur la R 16 TS, il a été amené à réduire l'angle d'avance à l'allumage qui précédemment était de + 2º pour

rue Montholon - PARIS

C.C.P. 10,332-34

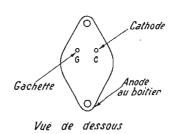
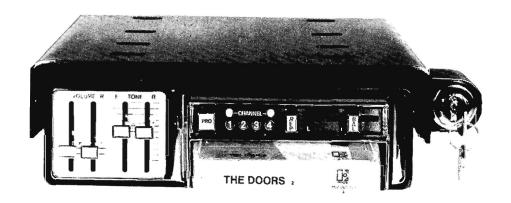


Fig. 8

le caler exactement à 0°. Sans cette précaution, des « à coups » à vitesse constante (hors accèlé ration ou en décélération se pro duisaient. L'étude théorique (voir Haut Parleur 1351) confirme en effet ces constatations, faites également par l'auteur sur la 304 Peugeot. L'avance avec cette 304 a comme sur la R 16 TS, été rè duite à 0°. L'excès d'avance par contre s'avère nécessaire avec l'allumage inductif pour l'obten tion d'un meilleur rendement. En cas d'ennui avec l'allumage élec tronique (cas rare) le fait de re passer à l'allumage normal ne donne certes pas une voiture ner veuse mais permet de continuer sa route sans problème, même avec l'avance à 0°.

Dans un prochain numéro, nous donnerons :

- Un plan de commutation par relais pour le passage de l'allumage électronique à l'allumage normal (essai comparati) sur route).
- L'analyse de quelques pan
- Les comptes rendus des lecteurs (il est toujours temps de nous en envoyer).
- L'étude du schéma de l'al lumage électronique pour véhicule en 6 V.
- Enfin quelques oscillogram mes relevés.


Henri LOUBAYERE

NOTA. – Nous conseillons aux lecteurs qui ont adapté cet allu mage (ou un autre modèle) sur leur automobile d'avertir leur as sureur de cette modification.

STEREOPHONIE À 4 CANAUX

LE LECTEUR DE CARTOUCHES

stéreophonie à quatre canaux suscite des dis cussions passionnées, et à Theure actuelle nous assistons à de nombreux remous provoqués par leur standardisation et compatibilité, encore a l'étude.

Il existe toutefois dans la tres vaste gamme des matériels stéreophoniques à quatre canaux. des appareils capables d'être utilisés en stéréophonie à deux ou quatre canaux et compati bles. Il s'agit soit de magnéto phones, soit de lecteurs de car touches 8 pistes, tel le Clarion présente iei.

Cet appareil permet indiffe remment la lecture de cartouches 8 pistes stereo 4 programmes ou 8 pistes quadristèreo 2 programmes. Il comporte a cet effet, un bloc à quatre têtes de lecture et quatre amplificateurs. Le fonctionnement stéreophonique a quatre canaux utilise la totalité des circuits, alors que le fonctionnement en stèréo classique n'utilise que deux têtes. mais utilise toute la puissance disponible par mise en parallèle deux à deux des amplificateurs de puissance.

CARACTERISTIQUES

Lecteur de cartouches 8 pistes au standard classique ou stereophonique à 4 canaux.

Commutation : automatique (standard RCA QUAD8).

Vitesse: 9.5 cm/s.

Pleurage et scintillement : interieur à 0.4 %.

Rapport signal / bruit : supe rieur à 45 dB.

Diaphonie: plus de 30 dB entre canaux; plus de 40 dB entre programmes.

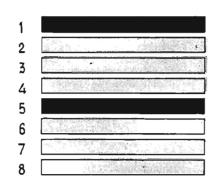
Bande passante : 50 Hz 10 kHz.

Impédance de sortie : 4Ω .

Puissance de sortie : supérieure à 14 W (4 × 3.5 W, avec 5 % de taux de distorsion harmonique), de 24 W au volume maximal $(4 \times 6 \text{ W}).$

Alimentation: 12 V continu. negatif à la masse (10.8 15.6 V).

Consommation: 2 A.


Encombrement : $200 \times 55 \times$

180 mm.

Poids: 2 kg.

PRESENTATION

L'aspect de l'appareil repond au canon japonais, avec une recherche qui se traduit par une face avant très agréable. La face avant est équilibrée, elle

Bande 8 pistes 4 programmes Stéréo

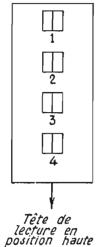
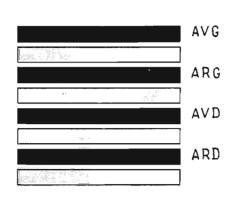
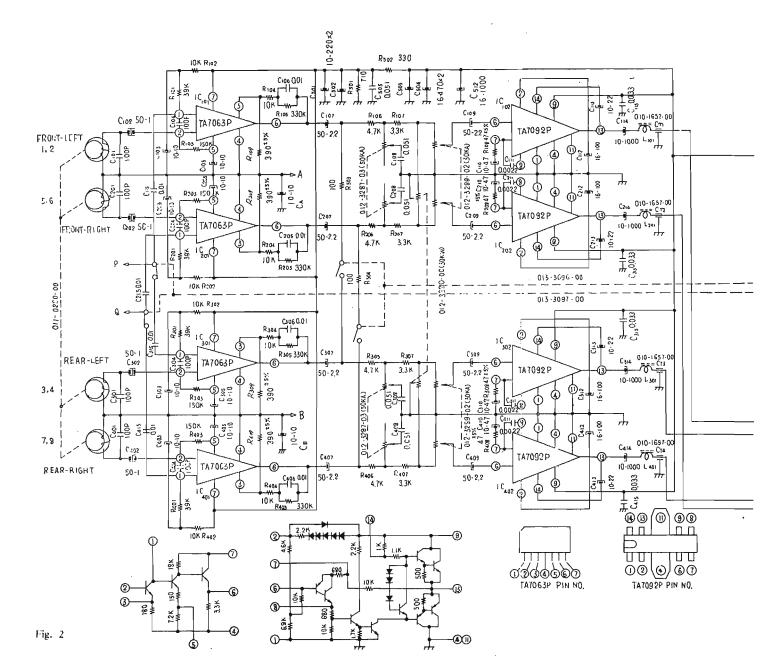




Fig. 1

Bande 8 pistes 2 programmes stéréophoniques à 4 canaux

comporte sur la gauche les commandes de volume et de correction de tonalité, mis en œuvre par des potentiomètres à déplacement linéaire, coulissant dans le sens vertical, et se présentant comme un petit pupitre de mixage. Les contrôles sont séparés, pour agir sur les voies avant et arrière.

Au-dessus du logement de la cartouche qui forme saillie, sont situés les voyants signalant les programmes lus, avec les boutons de sélection de programme et de répétition automatique, ainsi que le potentiomètre de balance, à déplacement linéaire.

La mise en route s'effectue d'une manière classique à l'introduction de la cartouche, la sélection du mode de fonctionnement est déterminée automatiquement en stéréo normale ou Page 146 – N° 1392 à quatre canaux, par une série de contacts actionnés par un ergot se logeant dans un petit évidement qui existe sur la cartouche stéréophonique à 4 canaux.

A ce moment, le voyant correspondant au mode de fonctionnement s'allume, avec celui du programme lu.

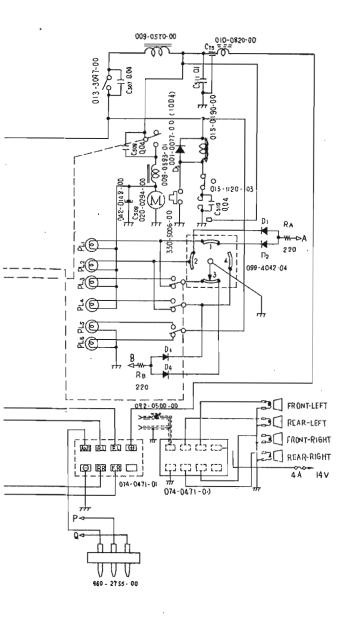
La fixation est d'un type amovible. Un petit châssis est fixé à demeure sur le véhicule, dans lequel le lecteur vient coulisser, les raccordements s'effectuant à travers un connecteur 8 contacts. Les liaisons vers les enceintes et l'alimentation sont réalisées en sortie du châssis rack, par des cordons souples, et une prise antenne est installée, pour le fonctionnement de l'appareil en récepteur classique lorsque l'on utilise une cartouche récepteur logée à la place de la cartouche normale.

Un petit verrou latéral, empêche l'extraction de l'appareil de son support si l'on n'en possède pas la clé.

Les technique et technologie employées sont très modernes.

Le constructeur a utilisé exclusivement des circuits intégrés pour la réalisation de cet appareil, ce qui amène une importante simplification au niveau industrialisation.

Le moteur est du type à régulation de vitesse mécanique incorporée, transmettant le mouvement au volant cabestan par l'intermédiaire d'une courroie caoutchoutée. Le volant est soigneusement équilibré, et solidaire du cabestan d'un diamètre de 5 mm.


Le bloc de têtes magnétiques est installé sur un petit bras mis en mouvement par le moteur pas à pas du type courant sur les matériels de ce genre.

DESCRIPTION DESCIRCUITS

La figure 1 représente la disposition des pistes en stéréo normale et en stéréo à quatre voies, ainsi que la position des têtes de lecture. En stéréo normale, la tête se déplace de 4 pas, en stéréo à quatre voies, elle ne se déplace que de 2 pas, car 4 pistes sont lues simultanément.

Le schéma figure 2 nous montre que le constructeur utilise pour toutes les fonctions, 8 circuits intégrés. Les circuits intégrés TA7063P sont utilisés en préamplificateurs de lecture, les circuits intégrés TA7092P en amplificateurs de puissance.

Pour le fonctionnement en stéréophonie à 4 canaux, tous les circuits sont alimentés. Lorsque la cartouche lue est du type standard, l'alimentation des préamplificateurs des voies arrière est coupée, et les signaux issus

des préamplificateurs avant droit et gauche sont dirigés vers les 4 amplificateurs de puissance, une commutation automatique dirigeant les signaux sur les amplificateurs de puissance des voies arrière droit et gauche. Bien que des circuits intégrés soient utilisés, les composants employés sont nombreux.

Le préamplificateur intégré TA7063P comporte 3 transistors (les schémas sont situés en bas et à gauche de la figure 2) montés en liaison continue. Les réseaux de correction sont extérieurs, branchés entre les points 6 et 3, émetteurs des transistors d'entrée et de sortie.

La liaison s'effectue à travers un condensateur, qui amène le signal sur l'amplificateur de puissance, en traversant correcteurs de tonalité, contrôle de volume et de balance.

Une commutation permet la

mise en parallèle 2 à 2 des ampli ficateurs de puissance en lecteur de cartouche normale, à travers les résistances R₅₀₃ - R₅₀₄. Les amplificateurs de puis

sance utilisent les circuits intégrés TA7092P, qui comportent 9 tran sistors, et dont les transistors finaux sont montés en Darlington. l'ensemble étant du type complé mentaire pur. Un condensateur raccordé aux bornes 7-8 joue le rôle de filtre passe-bas, et une contre-réaction interne stabilise l'amplificateur.

La liaison aux enceintes est réalisée à travers des condensa teurs de 1 000 µF, et un filtre LC stabilise l'amplificateur vis-à-vis de la charge.

Lorsque l'on utilise un bloc récepteur au format cartouche. un petit connecteur 3 contacts permet de raccorder au bloc l'antenne et assure les liaisons basse fréquence sur les entrées des

préamplificateurs aux points P

MESURES

La puissance délivrée par les amplificateurs, les quatre voies chargées est de 4 × 2,6 W eff, avec un taux de distorsion harmonique de 1 %, ce qui est très superieur à ce que peut délivrer un récepteur ou lecteur auto qui ne dispose que de deux voies.

La bande passante s'étend à la puissance indiquée de 60 Hz à 9 kHz à - 3 dB, valeur tout à fait intéressante, qui permet d'exploiter les signaux enregistrés à 9,5 cm/s.

Les caractéristiques du bloc lecteur sont conformes à celles annoncées, le pleurage + scintillement est de 0,38 %, la précision de vitesse de 1,2 %.

Le rapport signal / bruit mesuré est de 44 dB, à l'aide d'une cartouche étalon. La diaphonie mesurée en fonctionnement lecture de cartouche standard est de 43 dB à 1 kHz.

Toutes les mesures ont été effectuées avec une tension d'alimentation de 14 V.

ECOUTE

Il est assez rare encore de pouvoir disposer d'une installa-

tion de ce genre sur véhicule, et le nombre de cartouches disponible est assez limité. Mais l'essai est très intéressant, nous nous trouvons bien au milieu d'un orchestre, le réalisme est saisissant. Les possibilités offertes en réserve de puissance sont considérables, nous avons pu le vérifier à haut niveau, et toutes les possibilités musicales des cartouches peuvent être mises en évidence.

La qualité est proche de ce qu'offre une petite chaîne steréo d'appartement, à la limite de ce que l'on définit comme haute-

CONCLUSION

A l'heure actuelle, seuls les programmes stéréophoniques à quatre canaux enregistres sur bande sont à la fois compatibles et d'une exploitation simple. Le lecteur Clarion PE424 préfigure une catégorie d'appareils qui seront demain sur le marché. La technique utilisée est très moderne, et permet d'utiliser les possibilités offertes par la stéréophonie à 4 canaux d'une saçon spectaculaire.

J.B.

Construire un orgue KITORGAN à la portée de l'amateur

MONTEZ VOUS-MEME UN ORGUE DE GRANDE QUALITE progressivement, au moyen de nos ensembles. Toutes nos réalisations sont complémentaires et peuvent s'ajouter à tout moment. Haute qua-lité musicale, due aux procédés brevetés ARMEL.

Demandez dès aujourd'hui la nouvelle brochure illustrée UN ORGUE KITORGAN

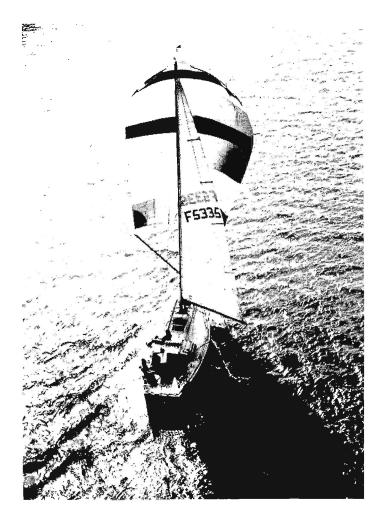
documentation unigue sur l'orgue et In construction des organes électroniques. EXTRAIT DU SOMMAIRE luis, jeux, rangs, reprises, accouplements, combinaisons, expression,

- Ce qui fait la qualité d'un orque Comment fonctionne un orgue ARMEL KITORGAN, Générateurs à transistors et à circuits intégrés,
- Comment sont obtenus les divers jeux La réalisation peut être progressive.
- Exemples : grand orgue à deux claviers et pédalier ; Petit ins trument à un seul clavier.
- Description : claviers, générateurs à transistors et à circuits intégrés, circuits de timbres, de vibrato, de percussion, préam plificateurs mélangeurs à circuit de silence, réverbération à haute fidélité, batterie d'anches, pédaliers, amplificateurs de puissance, haut-parleurs, consoles classiques et petites ébé

Conditions générales de vente, CREQIT ARMEL.

NOMBREUX SCHEMAS ET ILLUSTRATIONS

Démonstration des orques KITORGAN exclusivement à notre studio : 56, rue de Paris, 95-HERBLAY rendez-vous : tél. : 978.19.78


S.A. ARMEL BP 14 -95-HERBLAY

BON POUR UNE BROCHURE à adresser à S.A. ARMEL : Veuillez m'envoyer votre

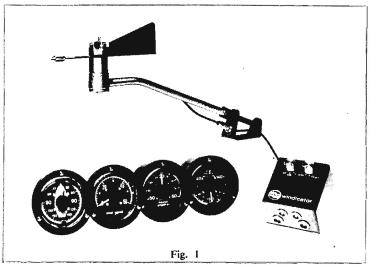
brochure « CONSTBUIRE UN ORGUE » Ci-joint un mandat - chèque postal chèque bancaire (*) de 5 F

(') Rayer les mentions inutiles

NOM :		 		 	 	
Profession	:	 		 	 	. 1
Adresse :		 		 	 	. ;
		 	,	 	 	٠ ,
Signature :		 	···· ·	 	 	

L'ÉLECTR AU 12^e DE NAVIGATION

E 12e Salon international de la navigation de plaisance qui s'est tenu au C.N.I.T. du 13 au 22 janvier 1973 a rassemble 600 exposants. parmi lesquels 23 présentaient des équipements électroniques d'aide à la navigation et de télé communications. Si le pourcentage d'exposants de ces matériels est faible, environ 4 %, l'éventail des équipements est très étendu. L'électronique s'est bien implantée dans ce secteur, nous avons rencontré quantité de pilotes automatiques, sondeurs à affichage ou enregistreurs, indicateurs de vitesse et de distance anémomètres et parcourue, girouettes, radio compas, goniometres simples ou automatiques, radars, radiotéléphones toutes bandes, dispositifs d'alarme... L'éventuel acheteur doit éprouver un réel embarras pour déterminer quel appareil correspond à son besoin.


Ces équipements sont généralement de l'abrication étrangère, mais des productions françaises sont également présentées. Tous les équipements sont de catégorie professionnelle ou semi-professionnelle, et conçus pour servir spécialement sur bateau, avec toutes les servitudes que cela comporte. Une grande partie de ces équipements est étanche. soit au ruissellement soit à l'immersion et les circuits sont tropicalisés et capables de fonctionner avec d'importantes variations de conditions climatiques. La présentation est toujours très soignée, agréable à l'œil, enfin ces appareils sont conçus pour servir très longtemps, les fabri cants ou distributeurs offrant de très sérieuses garanties pour la maintenance et l'après-vente.

CATEGORIES DE MATERIELS PRESENTES

Les récepteurs marine possedent un certain nombre de gammes; une bande G.O. étendue, de 150 à 400 kHz destinée à la réception de radiodiffusion et de radiophares pour exploitation goniométrique, bandes marine pour réception des bulletins météo, bande chalutiers, bande ondes courtes de 4 à 11 MHz pour réception des top horaires pour la navigation astronomique. Ces récepteurs comportent un BFO qui permet de recevoir la télégraphie et les signaux en BLU, un reglage du gain HF, et une prise pour goniométrie. L'ali mentation est prévue sur piles internes, mais l'appareil peut être raccordé à une alimentation extérieure

Les goniomètres permettent de déterminer avec grande précision la direction dans laquelle est situé un émetteur. Ceci permet par relèvement de la direction de 2 ou 3 émetteurs connus de déterminer la position du bateau, et connaissant la route du bateau et sa vitesse, de déterminer sa position en effectuant plusieurs relèvement d'un même émetteur à des intervalles de temps connus.

De plus à l'aide de deux stations réceptrices, on peut déterminer la position d'un mobile lorsqu'il émet. Les antennes sont soit des cadres à air soit des cadres ferrite tournants. Le goniomètre automatique permet par simple réglage sur la fréquence d'un émetteur de relever la position de celui-ci, ce qui permet de se diriger directement sur celui-ci. On peut effectuer toutes les ma

Windicator : Girouette-anémomètre électronique. Le Windicator est une girouette anémomètre donnant des informations très précises sur : la vitesse du vent apparent, la direction du vent au targe

Cet apparell est développé par Oxy Nautieu une division de Oxy Metal Fini shing, Genève.

ONIQUE SALON LA DE PLAISANCE

nœuvres comme sur un appareil de type manuel.

Les radio compas sont une version spécialisée d'un radio goniomètre automatique, qui se comporte comme un compas de route, et permet la réception sur les bandes exploitées en mer.

Les radiotéléphones sont de plus en plus utilisés pour la navi gation de plaisance. La radio téléphonie en BLU est obligatoire pour les installations nouvelles depuis le 1-1-73 sur les bandes décamétriques. Il s'agit là d'un progrès certain, car l'efficacité de ce type de modulation, compa rée à la classique modulation d'amplitude est de + 9 dB environ, à puissance égale, ce qui

Fig. 2

Indicateur de vitesse et de distance parcourue pour bateau à moteur. Le cudran indique la vitesse avent un arrière.

permet une sureté de trafic gran dement améliorée. En VHF, les équipements sont de plus en plus aprécies par la sureté et la clarté des transmissions malgré leur limitation de portée, qui peut être tout de même d'une cen taine de kilomètres si l'on utilise une antenne à grand gain.

Les émetteurs de détresse sont destinés aux plaisanciers qui n'ont pas de radiotéléphones à bord. Ils ont la forme d'un walkie talkie mais ne fonctionnent qu'à l'émission. Etanches et insubmersibles, ils permettent de transmettre le signal de détresse sur 2 182 kHz avec une puissance de 1 W, qui permet d'être entendu à une distance de 40 à 100 km.

Radars. Destines à des bâtiments d'un certain tonnage, les équipements proposés fonction nent en bande C ou X, et comportent des périphériques plus ou moins complets, consoles, etc.

Les pilotes automatiques permettent d'optimiser la route suivie. De très nombreux modèles sont proposès ; il tiennent compte du cap affiché, des effets combinés du vent, des vagues, de la vitesse du bateau, et agissent sur la barre du bateau.

Les sondeurs sont des instruments fort utiles pour la connais sance des profondeurs. Les matériels exposés entrent dans deux catégories, plaisance, à affichage par tube à éclats ou sous forme digitale, ou à enregistrement pour les bâtiments de pêche ou d'un certain tonnage.

Les indicateurs de vitesse sont avec les radiotéléphones les instruments les plus fabriqués. Ils peuvent indiquer soit la vitesse seule, soit la vitesse et la distance parcourue, ce qui en fait des appareils pratiquement indispensables à la navigation et obligatoires sur certains bâtiments. Les capteurs sont de type électro magnétique, à effet Doppler ou à hélice carénée et protégée contre les débris et les algues.

Les girouettes et anemomètres fournissent les indications sur la direction et la force du vent, ce qui est utile à la navigation, et indispensable en course. Cette aide permet de maintenir le bateau dans les conditions optimales, en indiquant instantanément les changements de force et de vitesse du vent pour ma nœuvrer les voiles.

Nous décrirons en détail cer tains de ces matériels dans nos prochains numéros, et procéde rons à la rédaction de bancs d'es sais sur ceux qui présentent le plus d'intérêt pour nos lecteurs.

UN DÉTECTEUR DE PROXIMITÉ

L'a détection ou le comptage d'objets en mouvement, le contrôle de niveau dans un réservoir ou un silo, ou encore la surveillance d'une flamme ou contre un cambriolage sont autant d'exemples qui nécessitent chacun en général un montage electronique approprié et spécialisé pour donner satisfaction. Suivant l'application souhaitée, différents principes sont utilisées, tels que l'opto électronique, les champs magnétiques, le rayon nement thermique, ou les champs électriques.

Le montage que nous proposons dans cet article utilise la variation du champ électrique produite par le passage d'un objet ou d'une personne entre deux électrodes ou encore par la variation de la distance séparant ces deux électrodes.

L'utilisation de ce principe présente l'avantage de pouvoir être diversifié et de s'adapter pratiquement à tous les besoins normalement rencontrés. Le détec teur que nous proposons est d'une réalisation et d'une mise au point simples, il se compose de deux parties qui sont l'émetteur et le récepteur.

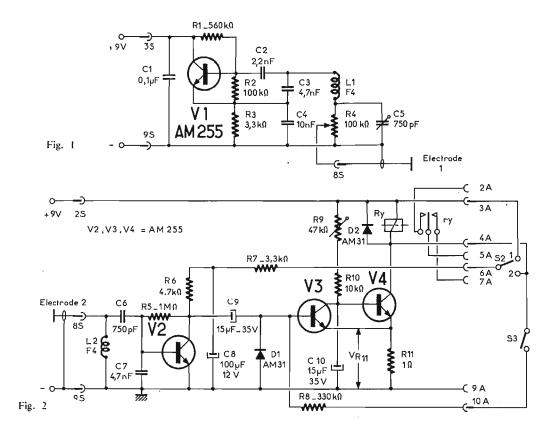
L'émetteur et le récepteur sont couplés par deux électrodes qui forment capacité, et c'est sur la valeur de cette capacité de couplage que doivent agir les objets à détecter. Un relais électromagnétique en sortie du récepteur enregistre le signal, soit par une impulsion, ou par une mémorisation.

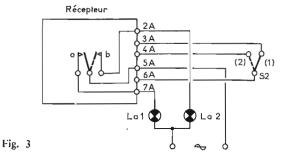
DESCRIPTION DU MONTAGE

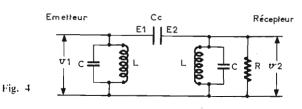
La capacité formée par les deux électrodes couple deux circuits oscillants accordés sur la même fréquence. L'un des circuits est excité par un oscillateur et constitue avec lui l'émetteur. Page 150 – N° 1392

L'autre forme le récepteur avec un étage d'amplification haute fréquence, un détecteur, une bas cule et le relais.

L'EMETTEUR


Cette partie est constituée par un oscillateur du type Colpitts qui est connu pour sa bonne stabilité en fréquence. La figure 1 représente cet oscillateur qui fonctionne à l'aide d'un transis tor au silicium V₁ sur la fréquence comprise entre 20 kHz et 40 kHz. Le choix de cette fréquence a été dicté par les deux considérations suivantes : ne pas gêner ou perturber la réception radio en grandes ondes, et travailler à une fréquence suffisamment élevée pour profiter au maximum de l'effet capacitif.


Le condensateur C_5 qui est réglable permet d'ajuster la fréquence de l'émetteur. A l'aide du potentiomètre R_4 qui est branché en parallèle sur C_5 , on prélève une partie de la tension pour l'appliquer par l'intermédiaire d'un câble coaxial sur l'électrode E_1 de la capacité de couplage. Cettc façon de prélever le signal sur l'oscillateur amortit moins le circuit oscillant


et altère donc moins sa stabilité en fréquence.

Si l'oscillateur est réglé sur 20 kHz, à l'aide de C_5 on mesure une consommation maximum de 1,5 mA sous 9 V. La tension aux bornes de la résistance R_3 est alors comprise entre 4,6 et 4,8 V. La tension de sortie aux bornes de C_5 a une valeur de l'ordre de 5 V.

Le circuit oscillant proprement dit peut paraître un peu compliqué, en effet, les capacités d'accord sont C_3 et C_4 en série alors que C_3 vient en soustraction de la bobine L_1 , ce qui per-

met une grande dynamique de la fréquence. Cela entraîne une valeur de self-induction pour L₁ relativement importante, d'environ 0,9 H. Cette valeur peut toutefois être facilement obtenue à l'aide d'un pot de ferrite.

RECEPTEUR

Comme nous l'avons déjà signalé, l'entrée du récepteur comporte exactement le même circuit oscillant que l'émetteur et fonctionne sur la même fréquence (Fig. 2). Une partie de la tension apparaissant aux bornes du circuit accordé est prélevée à l'aide du diviseur de tension formé par C₆ et C₇. L'amortissement du circuit oscillant est ainsi minimisé, car il est adapté à l'impédance d'entrée du transistor d'amplification V₇.

La tension amplifiée qui apparaît sur le collecteur de V, est transmise vers V₃ à l'aide du condensateur C₉ pour être redressée par D₁. La tension continue qui apparaît ainsi sur la base de V₃ positionne la bascule monostable formée par V₃ et V₄ de sorte que V₃ soit sature et V₄ bloqué. Le relais R₃ par conséquent n'est alors pas excité, si la tension sur la base de V₃ vient à disparaître. V₄ conduit alors et excite le relais.

Le basculeur monostable formé par V₃ et V₄ comporte comme tout basculeur deux boucles de réaction. l'une formée par la liaison entre le collecteur de V₃ et la base de V₄. l'autre par le couplage des deux émetteurs sur la résistance R₁. Un tel montage bascule au moment où la base de V₃ devient positive par rapport au potentiel des émetteurs, et revient dans sa position primitive dès que le potentiel de la base de V₃ diminue de nouveau.

VERROUILLAGE DU RELAIS POUR MEMORISATION

Dans le cas où l'on désire conserver l'information, il est possible de verrouiller le montage de sorte que le relais ne revienne plus dans son état initial une fois qu'une information est enregistrée. Soit que l'on utilise le montage avec le relais désexcité et le passage d'un objet entre les électrodes l'excite, ou encore, le montage avec le relais normalement excité et le passage d'un objet le désexcite. Dans les deux cas une mémorisation est possible, dans le premier cas en plaçant le commutateur S₂ en 2, des que le relais est excité V₂ n'est plus alimenté, il n'y a plus d'amplification et donc plus de potentiel sur la base de V₃, le relais reste donc excité.

Dans le deuxième cas, en fermant l'interrupteur S₃, quand le relais est désexcité, un potentiel positif est appliqué sur la base de V₃ par l'intermédiaire de S₃ et de R₈, ce qui maintient cet état.

La figure 3 illustre un exemple de signalisation à l'aide de deux lampes commandées par le contact inverseur du relais R_y. Normalement la lampe La₁ est allumée, si une information appa raît, La₁ s'éteint et La₂ s'allume. Ce tonctionnement peut bien entendu être mémorisé ou non, suivant la position du commutateur S₂.

Maintenant que le fonctionnement de l'ensemble est compris, attachons nous à voir en détail comment un objet passant entre les deux électrodes modifie le champ électrique de cette capacité de couplage.

INFLUENCE D'UN OBJET SUR LA CAPACITE DE COUPLAGE

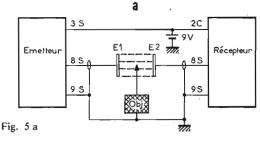
Un condensateur de couplage n'affecte pas le fréquence d'oscillation des circuits qu'il couple, à condition que ces deux circuits soient accordés sur la même fréquence. Dans ce cas la valeur de cette capacité de couplage influe directement sur la valeur de la tension apparaissant aux bornes du circuit oscillant du récepteur.

En partant de ces considérations, deux types d'influence sont alors possibles, soit que l'objet pénétrant entre les électrodes diminue la capacité, soit qu'il l'augmente.

ler exemple

L'objet est conducteur et est relié à la masse électrique commune à l'émetteur et au récepteur.

Nous voyons d'après la figure 5 b qu'aucun signal ne parvient au récepteur. Un tel objet se manifestera donc par suppression du champ électrique, c'est-à-dire par l'excitation du relais R...


2^e exemple

L'objet est conducteur mais n'est pas relié à la masse élec trique, ce cas est traité par la figure 6 a et b.

On dispose ainsi de deux capacités en série mais de valeurs beaucoup plus importantes que celles fournies par les deux électrodes seules. La capacité totale augmente par consequent et c'est cet accroissement qu'il faudra enregistrer, cela, par la désexcitation du relais R_y. Avant de détecter un tel objet, il faudra régler le potentiomètre R₄ de la figure 1 de sorte que le relais R_y colle en absence d'objet entre les électrodes.

3e exemple. Objet diélectrique. Un tel objet peut être détecté si sa constante diélectrique est supérieure à 1, ce qui est le cas pour beaucoup de plastiques et d'isolants. Jusqu'à présent nous n'avons considéré uniquement que le cas où l'on détecte la penétration de l'objet entre les contacts. L'information peut egalement être présentée de sorte que ce soit l'objet qui soit retiré de l'espace entre les électrodes. Dans ce cas, la signalisation en sortie est inversée par rapport à celle décrite dans les différents exemples.

A ce citre, le montage de la figure 6 a produit le même résultat que celui de la figure 5. Cette similitude de résultat se retrouve également entre les

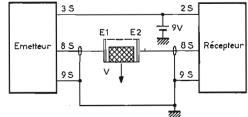
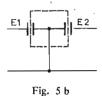
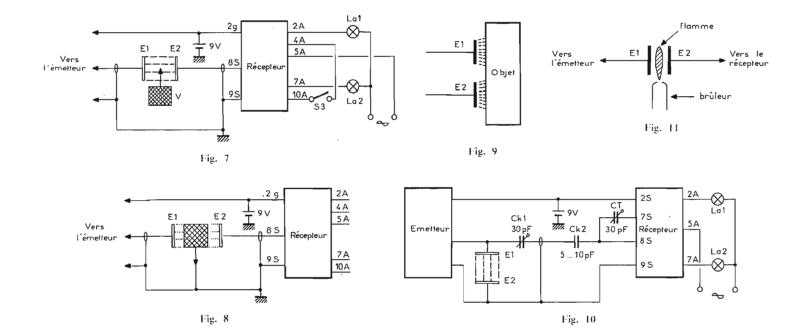




Fig. 6 a

E1 | E2

Fig. 6 b

montages de la figure 8 et de la tigure 7

D'autres dispositions des electrodes peuvent être utilisées pour detecter le passage ou l'approche d'objet. L'exemple de la figure 9 montre une application interes sante lorsqu'il s'agit d'objets conducteurs non reunis à la masse et de grande dimension, on ne place alors plus les électrodes l'une en face de l'autre, mais l'une à coté de l'autre, la proximité de l'objet effectue le cou plage.

Une variante interessante peut etre obtenue par désaccord de l'émetteur, comme representé par la figure 10 : en effet, on réa lise un nouvel accord de l'émetteur et du récepteur à l'aide des condensateurs ajustables, en introduisant un objet entre E, et E., l'emetteur est désaccordé par rapport au récepteur, ce déssaccord entraine une diminution de tension aux bornes du circuit du récepteur. Cette diminution se traduit par l'excitation du relais.

Comme dernier exemple d'ap plication, nous proposons la surveillance d'une flamme comme mentionné au début de cet article. La flamme étant fortement io nisée, elle est conductrice d'électricité, et cette caractéristique per met d'influencer le champ élec trique entre nos deux électrodes. La figure 11 montre la disposition de la flamme par rapport aux électrodes de la capacité de couplage. L'espace entre les élec trodes est pratiquement rempli par la flamme, ce qui revient à y introduite un objet conducteur. Nous avons traité ce cas dans l'exemple m 2 qui est illustré par la figure 6, et montre comment la capacité de couplage augmente dans ce cas. Si la flam me vient à s'étemdre, la dimi nution du couplage, qui résulte la disparition de l'objet conducteur entre les électrodes. entraine le fonctionnement du relais en sortie du récepteur.

Ces quelques exemples mon trent la grande versabilité de ce

Vient de paraître à la 12 édition de l'ouvrage :

CONSTRUCTION DES PETITS TRANSFORMATEURS

par Marthe DOURIAU et F. JUSTER

La 12^e édition de ce livre qui a été un de nos plus grand succès de libraine parmi les ouvrages techniques, a été complétement révisée, améliorée et rendue conforme à toutes les exigences de la technique actuelle. En ce qui concerne les divers transformateurs de petite puissance utilisables en électronique : radio, télévision, basse fréquence, chargeur, regulateur, les auteurs ont décrit dans ce livre toutes les méthodes pratiques et à la portée de tous, permettant aux lecteurs de concevoir et de réaliser facilement la plupart des transformateurs de petite puissance dont ils auront besoin.

Principaux chapitres:

Principe des transformateurs. - Caractéristiques des transformateurs. Calcul des transformateurs. Les matières premières. Les transforma teurs d'alimentation. - Les bobines de filtrage Transformateurs d'alimen teurs d'alimentation. — Les ucomes de intrage tation et bobines pour amplificateurs de grande puissance. Les transformateur BF. Les autotransformateurs. Les régulateurs manuels de la constransformateurs. tension. Les transformateurs pour chargeurs. Les transformateurs de sécurité. - Applications domestiques des petits transformateurs. Pannes des transformateurs. Réfection et modifications. Pratique du hobipage. Les transformateurs à colonnes. - Quelques transformateurs pour l'équipement de stations-service. Les transformateurs triphases. L'imprégnation des transformateurs. Les tôles à cristaux or Quelques transformateurs utilisés dans les montages à transistors. Les tôles à cristaux orientés

> Un volume broché de 208 pages, format 15 × 21, 143 schémas Prix: 18 F

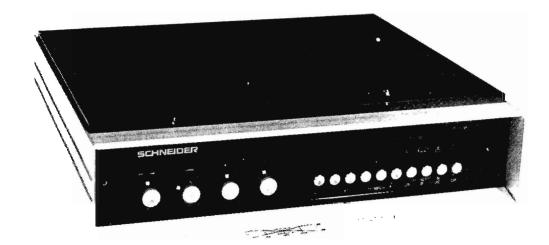
En vente à la

LIBRAIRIE PARISIENNE DE LA RADIO 43, rue de Dunkerque, PARIS (10°)

Tél.: 878-09-94/95 C.C.P. 4949-29 PARIS (Ajouter 10 % à la commande pour frais d'envoi)

dispositif, d'autres applications peuvent facilement être imaginees en vue de nouveaux problèmes précis qui peuvent se poser.

Chaque fois que l'on est amene à éloigner les électrodes de l'émetteur et du récepteur, il est indispensable d'utiliser du câble coaxial pour effectuer les liaisons du détecteur au dispositif électronique. Dans ce cas on relie le blindage du câble coaxial à la masse électrique de l'ensemble. Il est bon d'effectuer les liaisons par câble blindé chaque l'ois que la distance entre les électrodes et le récepteur et l'émetteur est un peu importante.


D'une façon générale, il est recommandé de conserver à l'ensemble un caractère de syme trie par rapport aux électrodes. c'est à dire qu'il y ait la même largeur de câble entre l'émetteur et l'électrode E, qu'entre le récepteur et l'électrode E,.

La nature du câble coaxial n'est pas absolument imposée. mais pour tirer le maximum du dispositif nous préconisons un câble à faible capacité répartie. Cette consideration nous fera par exemple préférer un câble coaxial de 300 12 à un autre de 75 ().

Il est necessaire pour obtenir un fonctionnement parfait que les bobinages de l'emetteur et du recepteur soient au moins éloignes d'une douzaine de centimètres. Cette précaution évite le couplage direct entre l'émet teur et le récepteur, couplage qui shunte alors celui des électrodes.

Bibliographie : Radio Bulletin octobre 70.

Page 152 Nº 1392

L'AMPLIFICATEUR

Schneider Audio 8008

A firme Schneider, qui a été l'une des premières socié ciétés françaises à produire des matériels de catégorie Hi-Fi, complète sa gamme en lançant sur le marché un amplificateur de 2 × 40 W, de présentation identique à celle de la série Au dio.

Ses performances sont bien en tendu très largement supérieures à celles des matériels précédents, cet appareil offre des caractéris tiques intéressantes, sa puissance de sortie en particulier, a été dou blée par rapport à l'Audio 7000.

CARACTERISTIQUES

Puissance de sortie : $2 \times 40 \text{ W}$ eff. sur charges de 4 à 5 Ω .

Distorsion harmonique : inférieure à 1 %.

Bande passante : 25 Hz 25kHz + 2 dB.

Correcteurs de tonalité : graves \pm 15 dB à 70 Hz, aigus \pm 15 dB à 17 kHz.

Filtres commutables : passe haut, passe bas, correction physiologique.

Entrées: Tuner I V/200 kΩ. Magnétophone. 1 V/200 kΩ. PU magnétique. 10 mV/47 kΩ. PU pièzo. 70 mV/50 kΩ. Mioro pièzo. 38 mV/110 kΩ.

Micro piezo, 38 mV/110 kΩ. Micro dynamique, 3 mV/10 kΩ.

Monitor, 1 V.

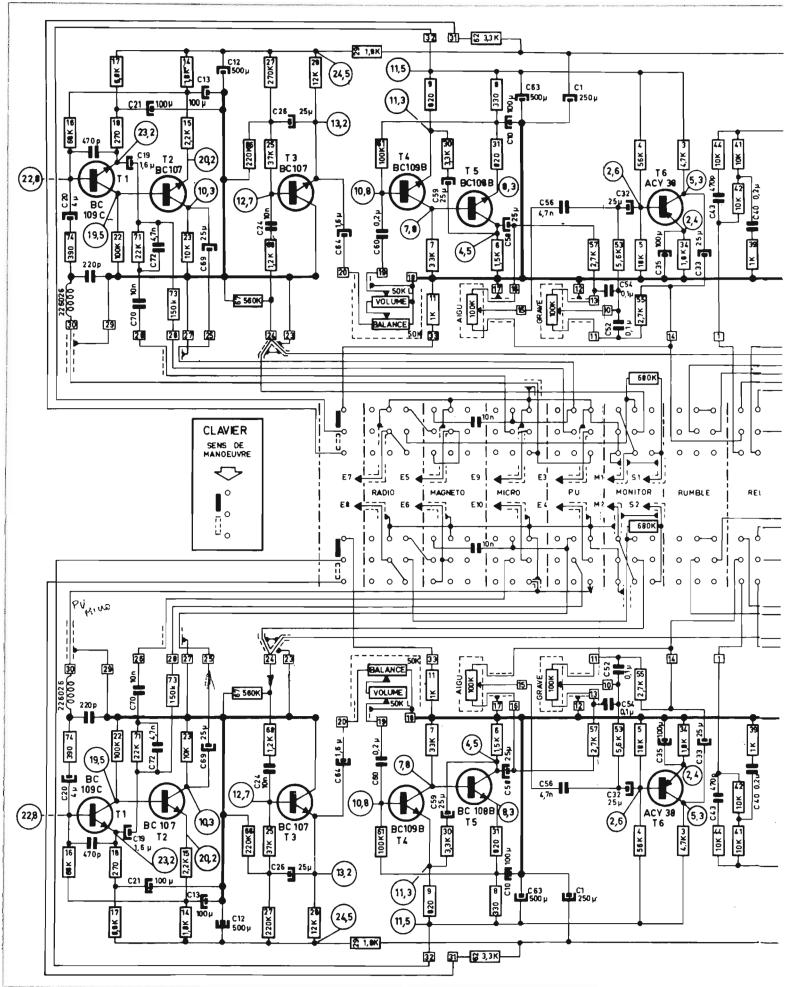
Sorties: Magnétophone, 600 mV/220 kg.

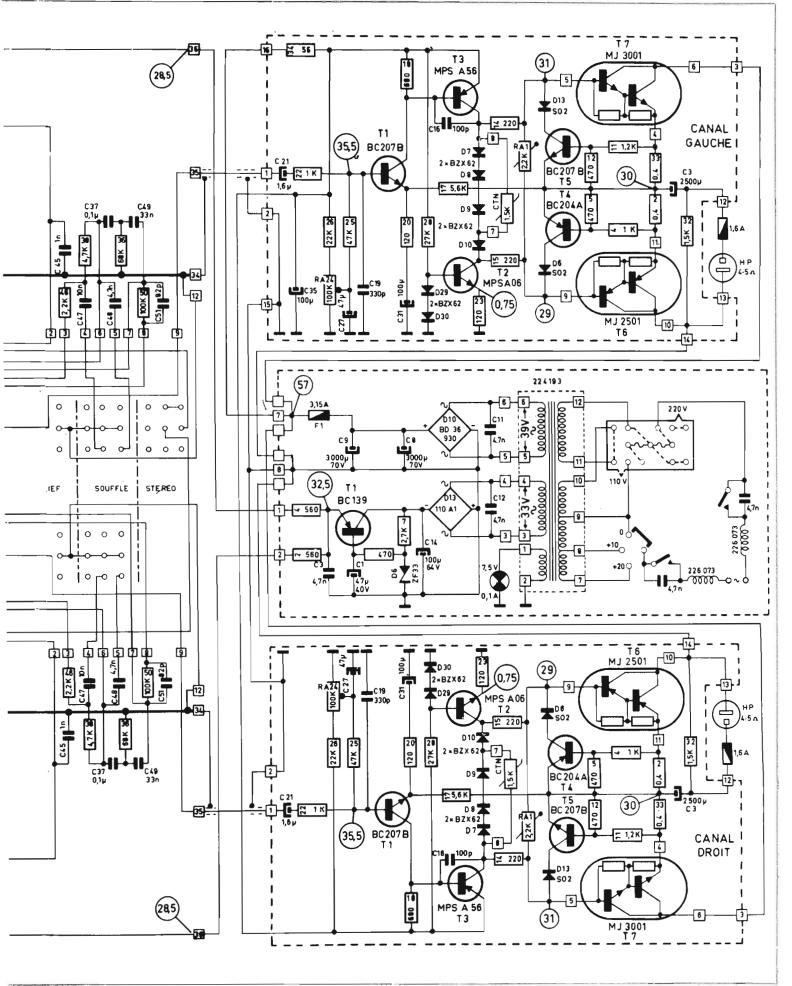
Enceintes, pour HP 4 à 5 Ω. Alimentation: 110-220 V., consommation maximale 220 VA Encombrement: 400 x 346 x 112 mm.

PRESENTATION

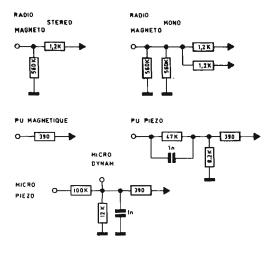
Le constructeur a repris le boitier de l'amplificateur Audio 7000, pour y installer de nouveaux circuits. L'esthétique est bien connue maintenant, le design est très moderne tout en restant sobre. Les commandes de la face avant sont occultées par un volet basculant, et le coffret est soit métallique soit habillé de bois. Lorsque le volet face avant est basculé vers le bas et qu'il démasque les commandes, on peut consulter sur une etiquette fixée au dos de celui-ci, le modelé de la courbe de reponse que permettent les filtres et les correcteurs. A no tre avis, le constructeur a judi cieusement conservé pour son nouvel appareil la formule mise au point précédemment. Toutes les fonctions sont accessibles au moyen d'un clavier à 10 touches placé à droite sur la face avant, les potentiomètres étant sur la gauche : le bandeau plastique de la face avant est de couleur som bre

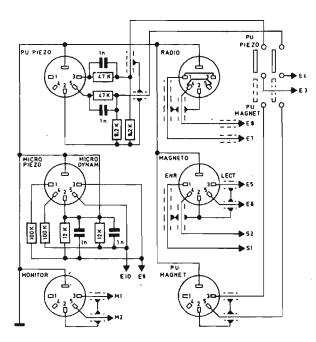
Les raccordements sont tous ramenés sur le panneau arrière, ils s'effectuent tous par l'intermé diaire de prises DIN pour les entrées et les sorties. Le répartiteur de tension réseau comporte un petit cavalier permettant l'adaptation la plus approchée à la tension disponible, et les fusibles de protection y sont disposés.


REALISATION


Les différentes fonctions sont groupées sur des cartes impri mées, raccordées entre elles à l'aide d'un câblage classique soudé. Les composants sont de bonne qualité : le constructeur a fait usage de circuits Darlington intégrés pour les étages de puis sance. La technique et la technologie sont classiques, les circuits de sortie sont protégés électroniquement, de plus les enceintes sont protégées par des fusibles. Tous les étages, à l'exclusion de ceux de puissance fonctionnent sous tension d'alimentation régulée.

L'accessibilité aux circuits est excellente, une seule vis bloque le panneau du dessus de l'appa reil, et lorsqu'il est ôté, tout le câblage est dévoilé. L'industriali sation de l'appareil a été bien réalisée.


DESCRIPTION DES CIRCUITS (voir Fig. 1)


L'amplificateur peut être raccorde à toutes les sources existantes : tuner, magnétophone, tourne disque, micro. Le clavier N° 1392 – Page 153

PRINCIPE DE LA COMMUTATION DES ENTREES

à touches permet la sélection des signaux choisis, et dirige ceux-ci vers les circuits à haute ou basse sensibilité selon leur spécialisation.

Tourne-disque. Lorsque l'on utilise une cellule de lecture de type magnétique, on sélectionne à l'aide d'un inverseur situé au dos de l'appareil l'entrée concernée, et les signaux sont dirigés vers le préamplificateur correcteur RIAA (voie du haut). Ils arrivent sur la borne 30 du circuit imprime, et traversent la résistance R₇₄ puis le condensateur C₂₀, avant d'être appliqués sur la base du transistor T₁. La réponse en fréquence de cet etage est corrigée par un réseau commute constitue par C_{19} - R_{71} - C_{72} - C_{70} - R_{73} réinjectant une fraction du signal de sortie repris sur le transistor T₂ second étage préamplificateur. La liaison T₁-T₂ est continue, la sortie des signaux est prélevée à travers le condensateur C_{69} sur le collecteur du transistor T₂. Les signaux sont dirigés simultanément vers la sortie magnétophone pour enregistrement, et sur l'étage suivant, transistor T₃, utilisé en emetteur follower.

Microphone. Si l'on raccorde un microphone à l'appareil, le signal délivré est de l'ordre de quelques millivolts. On utilise donc le préamplificateur correcteur, pour porter son niveau à la valeur nécessaire à son exploitation correcte. Dans ce cas, la cellule de correction RIAA n'est pas commutée entre les transistors T₁ et T₂.

Enregistrement, lecture et monitoring. Le signal sortant du préamplificateur correcteur est comme nous l'avons indiqué cidessus dirigé vers la prise enregistrement. Si le magnétophone dispose de têtes de lecture et d'enregistrement separées, lorsque l'on enclenche la touche monitoring, la lecture des signaux enregistrés est assurée, ceux-ci sont appliqués sur la base du transistor T₃. Le signal de lecture, lorsqu'il s'agit d'un magnétophone à deux têtes classique, est également appliqué sur cet étage. A noter que les signaux de l'entrée tuner sont dirigés à travers une liaison continue vers le magnétophone, pour enregistrement, sans aucun composant susceptible d'altérer le niveau ou les fréquences de ceux-ci.

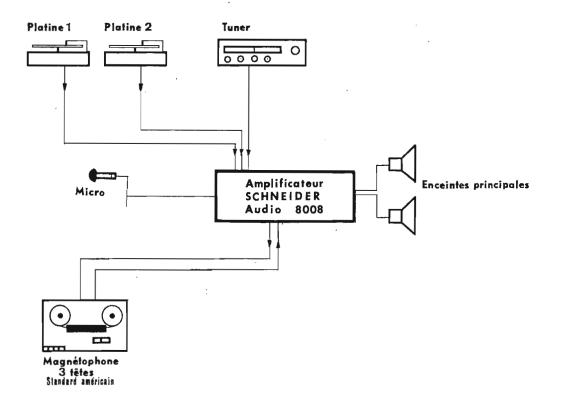
A la sortie du transistor T_3 , les signaux traversent le condensateur C_{64} , et sont soumis à l'action des potentiomètres de volume et de balance, puis à travers le condensateur C_{60} arrivent sur les circuits correcteurs. Les signaux sont amplifiés par les transistors T_4 - T_5 couplés par une liaison continue. Le réseau condensateur C_{59} -résistance R_{30} assure une contre réaction entre collecteur

de T₅ et émetteur de T₅, les circuits de correction de tonalités agissant sur le transistor T₆. Le système adopte est une contreréaction sélective entrée-sortie sur cet étage, assurée par les réseaux disposés à cet effet entre collecteur et basc du transistor T₆. En sortie de ce transistor, les différents filtres commutables passe-haut (rumble), passe-bas (souffle), et correcteur physiologique (relief) exercent leur action, et la touche stéréo permet l'attaque séparée ou couplée des deux voies, avant d'entrer sur les amplificateurs de puissance.

Le signal traverse le condensateur C21 et la résistance R22, avant d'être injecté sur la base du tran-sistor d'entrée T₁. Cet étage a son point de fonctionnement fixé à l'aide du potentiomètre ajustable RA₂₄. L'ensemble transistors T₂· T₃ diodes D₇... D₁₀ travaille à courant constant. Le condensateur C₁₆ agit en filtre passe-bas pour assurer une stabilisation à l'amplificateur. Le signal est ensuite transmis à travers la résistance R₁₄ aux Darlington complémentaires de puissance, le potentiomètre RA, réglant la symétrie. La liaison à la charge s'effectue à travers le condensateur C3 de 2 500 µF, valeur convenable. La protection de l'amplificateur est assurée d'une part par une CTN, d'autre part à l'aide de la protection électronique du type maintenant classique qui utilise les transistors T₁-T₅, rendus conducteurs si le débit des transistors finals depasse une limite prédéterminée, ce qui provoque le blocage des drivers.

Par ailleurs, une protection par fusibles est insérée dans la liaison aux enceintes.

Le transformateur d'alimentation comporte trois secondaires, l'un utilisé pour le voyant de mise en route, les deux autres fournissant les tensions nécessaires au fonctionnement de l'amplificateur de puissance, et des préamplificateurs.


La tension alimentant ces derniers est régulée et filtrée par le transistor T_1 , BC139 dont la base est découplée par le condensateur C_1 et stabilisée par la diode zener D_6 . Ce transistor amène rappelons-le, le même effet de filtrage qu'un condensateur de $2\,000\,\mu\text{F}$, pour un volume et un prix bien plus réduit (le filtrage est égal au produit du β par la valeur du condensateur de découplage de la base du transistor).

MESURES

Le relevé des caractéristiques nous a indiqué une concordance avec tous les paramètres publiés par le constructeur.

TRANSISTORS

YUS DE DESSOUS

Nous avons procédé à une « cuisson » pendant deux heures à la puissance nominale, avant de mesurer les différentes caractéristiques et nous n'avons noté aucun incident, ce qui nous permet de penser que l'amplificateur peut fonctionner parfaitement dans les conditions d'écoute et d'utilisation normales sans défaillance pendant longtemps.

La puissance maximale délivrée, est de 2×42 W eff. sur charge de 4Ω . La bande passante dans ces conditions s'étend de 30 Hz à 20 kHz à -2.5 dB, la distorsion harmonique étant de 0.5% et la distorsion par intermodulation de 1.2%.

Valeurs relevées sur chaque voie. La sensibilité des entrées est conforme aux spécifications : le rapport signal/bruit est de 71 dB sur l'entrée cellule magnétique. La séparation des canaux (diaphonie) est excellente, elle atteint 62 dB.

Les correcteurs de tonalité ont une action énergique, + 17 - 19 dB à 70 Hz, + 14 - 20 dB à 15 kHz. L'action des filtres est très efficace pour le souffle, - 15 dB à 12 kHz; un peu faible pour le rumble - 8 dB à 30 Hz.

La correction RIAA est voisine de la norme à \pm 1,5 dB, ce qui est satisfaisant.

Le facteur d'amortissement est de 40 sur 4 Ω, valeur qu'il est bon de situer exactement (voir Hi-Fi Stéréo d'octobre 1971 n° 1324).

Générateur BF Amplificateur 49 49 49 40 40 Distorsionètre Oscilloscope double trace Voltmètre Electronique

ECOUTE

Nous avons raccorde l'amplificateur à des enceintes d'un prix de l'ordre de 1 000 F. afin de tirer parti de toutes les qualités de l'Audio 8008, et à une platine Thorens TD150. L'écoute est très bonne, la réserve de puissance de l'amplificateur est confortable, permettant la reproduction des transitoires. Les correcteurs de tonalité et les filtres permettent l'adaptation correcte de la chaîne au local d'écoute et à l'oreille.

CONCLUSION

L'appareil que nous avons eu à notre disposition fait partie de la présérie. A ce titre, il ne comporte pas de prise casque, ni la possibilité de raccorder deux paires d'enceintes, dispositions que le constructeur nous a affirmé devoir prochainement adopter. Le design s'il reste celui des amplificateurs Audio 7000 est maintenant d'un classicisme qui n'est pas tapageur mais permet une intégration tacile dans un intérieur

Les possibilités et les performances sont celles d'une bonne chaîne Hi-Fi, l'amplificateur est destiné à fonctionner avec une très bonne platine et des enceintes d'une qualité certaine.

J.B.

KÖRTING TRANSMARE

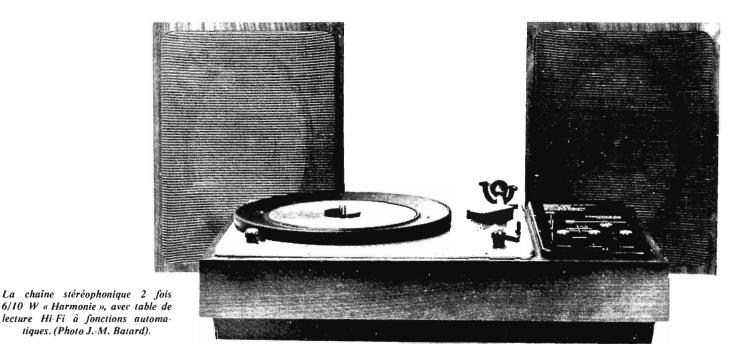
qui fabrique depuis près de 50 ans des produits électroniques de haute qualité (5 usines en Europe, 4.000 ouvriers, 40 milliards anciens de C.A.) vous propose:

La NOUVELLE TECHNIQUE 73

avec A 710

 A 710 : ampli de qualité professionnelle 2x35w (DIN 45 500) - 4 sorties Multisound, prêt pour la quadriphonie, équipé de 4 filtres.

T710


T 710: tuner HI-FI (performances professionnelles): l'AFC automatique entre en service après réglage de la station (indicateur lumineux). Indicateur de fréquence des stations FM prérèglées.

Renseignements documentation liste des revendeurs à :

Hall de démonstration

KÖRTING RADIO

Rép. Féd. Al.
Direction France:
48,bd de Sébastopol - 75003 PARIS
Tél. 887.15.50 +
B.P. 448 - 75122
Paris Cédex 03

CHAINE STÉRÉOPHONIQUE

«HARMONIE»

ETTE chaine se compose de trois parties distinctes qui sont : la platine tourne-disques, l'amplificateur et les baffles.

LA PLATINE TOURNE-DISQUES

Posee sur un socle, par l'intermediaire d'une suspension souple, employant des petits ressorts spirales, cette table de lecture présente tout d'abord un plateau de grandes dimensions, supportant aisément les disques de plus grands diamètres. Ce plateau est lourd, et parfaitement adapté à une lecture sans fluctuation excessive. Le bras de lecture se trouve, pour sa part, divisé en trois parties.

- Une cavité pouvant recevoir une cellule phonocaptrice de n'importe quel type standard.
- Un bras tubulaire en aluminium, renfermant le conducteur et représentant une masse rigide de poids réduit.

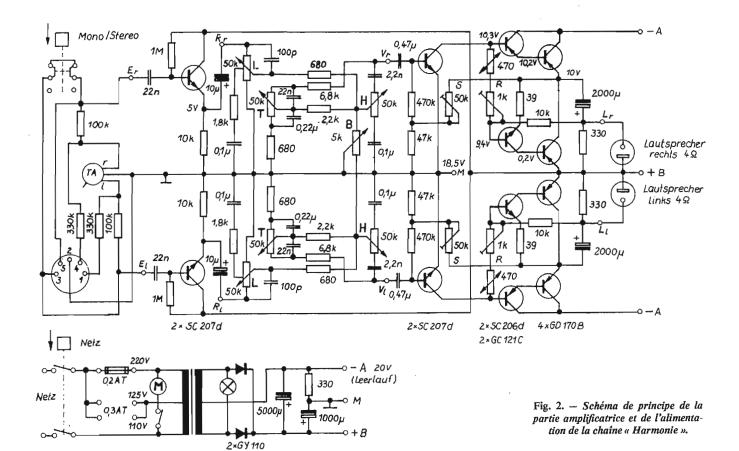
 Une articulation avec contre-poids, permettant d'obtenir la force d'appui désirée au niveau de la pointe de lecture.

Cette table est à fonctionnement automatique. Elle comporte un dispositif de dépose et de releve du bras en douceur, confortablement amorti. La fonction automatique, mue par un ensemble mecanique simple, ne doit pas poser de problème à ses utilisateurs. En plus, les dispositifs mécaniques ne peuvent pas avoir d'influence sur la qualité de la lecture. Des fluetuations dont le taux ne dépasse pas 0,2 % sont enregistrées sur cet ensemble mécanique, ce qui le classe dans la catégorie moyenne de l'échelle de la haute fidélité.

L'AMPLIFICATEUR

Il est mécaniquement inclus dans la partie droite du boîtier servant de socle à la table de lecture, avec les commandes groupées sur la face supérieure. Le schéma du circuit électronique d'amplification est donné en figure 2.

Sur une prise DIN sont regroupées les différentes entrées possibles, selon les normes généralement admises. Ces sources sont appliquées sur chaque canal, au premier transistor, préamplificateur monte en émetteur commun.


Un potentiomètre de 50 k Ω sert, à la sortie de cet étage, à contrôler le niveau du signal (réglage de volume). Puis, la modulation est appliquée au dispositif de correction à double reglage de tonalité. On notera la présence, également, d'un potentiometre de 5 kΩ log., qui sert à équilibrer les deux canaux (balance). Un transistor monté en préamplificateur (émetteur commun à nouveau) permet de relever le niveau du signal, lequel se trouve considérablement affaibli dans les circuits de correction. Puis, on

découvre l'attaque du circuit de puissance, par deux transistors déphaseurs, commandant un push-pull de deux transistors de puissance identiques. La sortie bien entendu sans transformateur, utilise une forte capacité électro-chimique (2 000 µF). Les deux canaux sont absolument identiques avec deux sorties pour les haut-parleurs d'impédance moyenne de 4 \(\text{ } \)2.

Chaque canal permet d'obtenir une puissance nominale de 6 W environ, cette puissance pouvant approcher les 10 W en valeur musicale de crête à crête. Les circuits de puissance sont alimentés en courant continu par une ligne positive et négative, entre lesquelles on trouve une différence de potentiel de 40 V (de – 20 à + 20 V). Le point milieu, donc à 0 V, se trouve relié à la masse au niveau de l'alimentation. Les circuits préamplificateurs sont alimentés sous 20 V continus.

Dans cette alimentation basse tension, il faudra remarquer le

Page 158 - Nº 1392

choix d'un élément de filtrage de 5000~uF, valeur extrêmement élevée, assurant en toutes cir constances une suppression totale du ronflement.

Ces circuits amplificateurs ne comportent pas d'étage préamplificateur d'égalisation. La consequence est qu'il ne peut être employé avec cette chaîne que des cellules ceramiques, ce qui ne veut pas dire qu'on ne peut pas utiliser des cellules de bonne qualité. En effet, les performances acquises grâce aux cellules piezo sont telles qu'il est parfaitement convenable de les employer sur des ensembles Hi-Fi économiques. La restitution des fréquences extrêmes est plus que correcte, surtout en présence d'un circuit amplificateur bien conçu.

LES BAFFLES

Deux baffles à haut-parleurs élliptiques, avec cônes d'aigus, sont livrés avec l'ensemble. Il permettent, grâce aux dimen sions relativement grandes des diffuseurs (la puissance sur

chaque canal n'est quand même pas très élevée) une restitution agréable des fréquences basses, sans coloration. Les aigus sont également bien disfusés, et l'on apprecie, comme toujours dans ce cas, le point de départ excellent de cette bande de fréquences. parfois meilleur que dans le cas de tweeters séparés et pas forcé ment bien adaptes. Si le hautparleur à cône a avant tout une justification commerciale, dans le but d'une certaine économie, il n'en possède pas moins d'excellentes qualités de diffuseur multi fréquences.

SUR LE PLAN PRATIQUE

L'ensemble de la chaîne Harmonie se trouve dans une ébénisterie en bois moderne (tous éléments assortis). A l'intérieur, une réalisation propre et bien conçue permet de confirmer qu'il s'agit bien d'une réalisation très sérieuse.

L'économie a, dans le cas de cette installation, impliqué un seul sacrifice : le choix d'une cellule piezo. C'est à notre avis et compte tenu des résultats obtenus, un point d'importance secondaire, qui sera vite oublié par l'acquéreur. Les performances principales sont les suivantes :

- Puissance nominale : 2 \times à 6 W.

Bande passante : 35 à 16 000 Hz.

Distorsion: entre 0.15 et
0.20 % à 6 W; entre 0.5 et
1.5 % à puissance maximum.

Présentation extérieure et bonnes performances sont donc les deux caractéristiques essentielles, de la chaîne Harmonie. En conclusion on peut donc affirmer qu'il s'agit bien d'une excellente petite chaîne haute-fidélité, se situant bien au-dessus de l'électrophone stéréophonique cité plus haut.

Yves DUPRE.

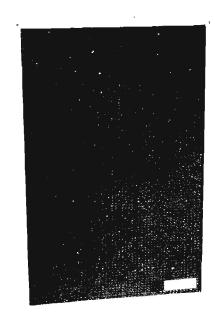
- CE MATÉRIEL EST NOTAMMENT EN VENTE .-

CHAINE HARMONIE

Extraordinaire par son prix - Ampli 2 \times 12 W - 30 à 19 000 Hz - Prise magnéto/tuner - Platine 33 et 45 t. semi-automatique - 2 enceintes acoustiques système 2 voies, HP 16 \times 24 cm

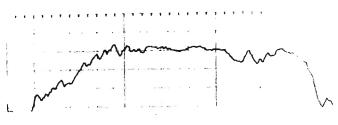
+ tweeter. Livrée avec plexi.

599 F + 20 F frais de port.


A crédit ; 1°' versement 189 F et 28,50 F par mois.

AUDIOCLUB RADIO-STOCK 7, rue Taylor, PARIS-X° - Tél. 208.63.00 607-05-09 - 607-83-90

Ouverture le lundi de 14 à 19 h et du mardi au samedi de 10 à 19 h Nocturnes tous les jeudis jusqu'à 22 h


- Parking ; 34, rue des Vinaigriers - C.C.P. PARIS 5379-89

une offre exceptionnelle...

enceintes 25 Watts efficaces enceintes Hi-Fi à 3 voies

DIMENSIONS: 465.315.250 Poids: 9 Kgs

COURBE DE REPONSE

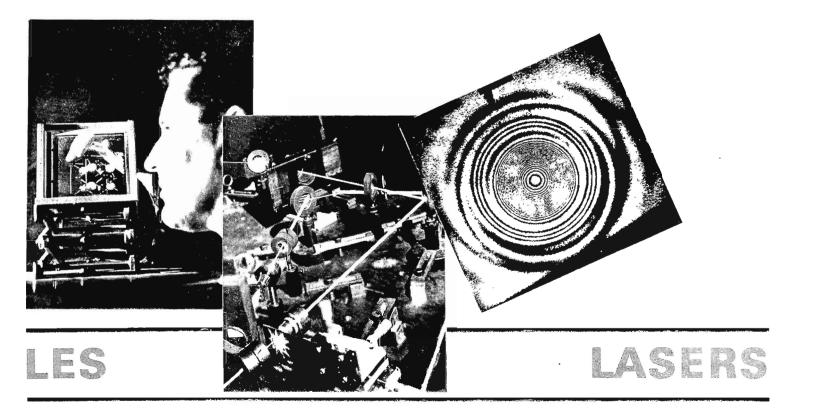
GRAVES 1 HP 17cm à membrane traitée

MEDIUMS 1 HP 17cm série spéciale AGm2

AIGUS 1 Tweeter TW I 6,5

IMPEDANCE: 8 ohms

 $390\, \mathsf{Frs.TTC}$


GARANTIE TOTALE DE 1 AN

Grâce au principe du cloisonnement, (division de l'enceinte en deux modules absolument étanches) l'information musicale émise par chaque HP garde son entière définition et permet d'obtenir une remarquable réponse en régime impulsionnel, tout en gardant un parfait équilibre sonore. Les propriétés absorbantes du revêtement interne suppriment efficacement l'effet tonneau. Le filtre capacitif permet une diffusion d'espace des fréquences aigues.

EXPEDITION EN PROVINCE: à lettre lue si règlement joint. Envoi contre remboursement : 50 % d'arrhes à la commande. Dans ces deux cas port et emballage en sus. (Le poids implique un envoi par la S.N.C.F.).

ETUDE ET RECHERCHE ELECTRONIQUE: 17 RUE LAMBERT PARIS 18e TEL: 935.14.69
DEMONSTRATION PERMANTE TOUS LES JOURS SAUF LE DIMANCHE DE 9h à 12h30
METRO: CHATEAU-ROUGE ET JULES-JOFFRIN AUTOBUS No 80 14h30 à 19h30

AFL FITAE

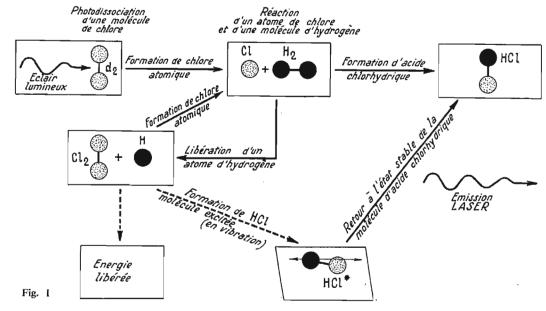
LES LASERS CHIMIQUES

la fin de 1964 s'est tenue, à San Diego. Califor nie, une conférence dont le but était de définir et d'étudier un groupe spécial de lasers : les lasers chimiques.

A cette date, aucun laser chimique n'avait encore été réalisé. Cette conférence se devait de repondre a la question : est il possible d'obteair une inversion de population des ctats exeités, d'atomes ou de molécules, par une réaction chimique?

QU'EST CE QU'UN LASER CHIMIQUE ?

Une semaine après la confé rence de San Diego, G. G. Pi mentel et J. V. Kasper, de l'Uni versité de Berkeley, annonçaient la naissance du premier laser chimique. Ce dernier reposait sur la réaction de combinaison du chlore et de l'hydrogène, donnant naissance à de l'acide chlorhy drique. Ici, le pompage chimique résulte de la conversion directe de l'energie de réaction en une excitation de l'un des constituants produits (l'acide chlorhydrique dans ce cas), réalisant ainsi l'inversion de population.


C'est une première définition, très stricte du laser chimique.

Une seconde, plus large, englobe tous les phenomènes dans lesquels il y a réalisation ou destruction de liaisons chimiques, indépendamment de l'origine de l'énergie nécessaire à cette réaction.

Peu de temps après la mise au point des premiers lasers chimiques, Pimentel, dans la revue Scientific American, publia une etude generale sur ce type de lasers. Les phénomènes d'émis sion sont très différents selon les constituants formés au cours des réactions chimiques :

 Lorsqu'il s'agit de molécules dans un état excité. l'énergie est généralement sous forme vibra tionnelle: • Pour les atomes, l'énergie est sous forme électronique.

Certains lasers chimiques possèdent les caractéristiques d'émission de lasers molèculaires (leur rayonnement est dans l'infra rouge), alors que d'autres lasers chimiques se caractérisent par un rayonnement dans l'ultra

violet ou dans le spectre visible. comme les lasers ioniques.

Considérons un mélange chimique constitué par deux substances, que l'on designe par A et BC, où A, B, C représentent des atomes ou des fragments de molécules. Si elles réagissent ensemble, ces substances donneront naissance, par exemple, au composé AB, avec libération de C. Cette réaction chimique s'accompagnera éventuellement d'un dégagement de chaleur (la réaction est exothermique). S'il faut fournir de la chaleur au mélange A + BC, la réaction est dite endothermique.

Si la réaction est exothermique, l'énergie peut produire quatre formes distinctes d'excitation des molécules et atomes :

- L'excitation électronique est liée à des phénomènes très énergétiques. Les électrons vont changer d'orbite. Le photon capable d'exciter a ce point la molécule se situera dans la gamme visible, ou dans l'ultraviolet. Lorsque la molécule se désexcitera, elle émettra un photon très énergétique, se situant dans le spectre visible.
- L'excitation de vibration correspond à des phénomènes moins énergétiques, dans l'infrarouge.
- Si l'excitation est encore plus faible, elle ne parviendra qu'à engendrer la rotation de la molécule sur elle-même. Les échanges d'energie se manifestent par des longueurs d'onde micrométriques.
- Enfin, l'excitation de translation est la forme associée à l'agitation thermique des molécules.

Si le produit d'une réaction chimique place les molécules dans des états d'énergie correspondant à une excitation de vibration, on a alors un renversement des densités normales de population des différents états excités : il y a eu un pompage

chimique. Le retour à l'équilibre se fera suivant le processus de l'émission stimulée : on observe l'effet laser.

On pourrait évidemment envisager de porter les molécules à un état d'excitation moindre, correspondant à leur rotation. En principe, si l'on y parvenait, on aurait réalisé la aussi une inversion de population, se traduisant par l'effet laser lors du retour à l'état normal. En fait, la durée de vie de l'état d'excitation par rotation est extrêmement brève, et les collisions entre molécules sont cause de l'égalisation des énergies. Les temps de relaxation sont de l'ordre de la milliseconde au moins, pour les énergies électroniques et de vibration, de l'ordre de la microseconde pour les autres energies, et en particulier pour l'énergie de rotation : excitée avec la seule énergie de rotation, une molécule n'a pas le temps de revenir à son état stable par rayonnement : elle perd son surplus d'énergie dans les chocs avec d'autres molécules.

DES LASERS A IMPULSIONS

Il est nécessaire que la durée de la réaction chimique soit inférieure au temps de relaxation de l'excitation électronique ou de l'excitation de vibration ; de même la réaction doit être amorcée par un phénomène extérieur (impulsion lumineuse), sous forme d'une impulsion énergétique extrêmement brève. Les lasers chimiques sont donc des lasers à impulsions: ils sont souvent désignés comme des lasers à photodissociation.

DE NOMBREUSES REACTIONS POUR LASERS CHIMIQUES

Le laser à HCl de Kasper et Pimentel est le premier qui répondé a la definition la plus stricte des lasers chimiques. Il a été réalisé dès 1965 ; il peut être classé parmi les lasers moléculaires.

Le mélange à volume égal de chlore et d'hydrogene, à des pressions comprises entre 1 et 50 torrs*, est soumis à l'éclairement d'une lampe à éclairs, d'énergie électrique comprise entre 200 et 2000 joules. Une succession de raies d'émission stimulée est observée dans les 30 microsecondes qui suivent le déclenchement de la lampe à éclairs : l'émission se produit sur une longueur d'onde située dans l'infrarouge (3,773 um) avec une puissance de 10 W, et une durée d'environ 15 us, dans une enceinte longue de 60 cm, et 14 mm de diamètre, avec environ 15 torrs dans le mélange hydrogènechlore.

L'effet laser à partir de la photodissociation de composés iodés a été observé à la même époque, par la même équipe de chercheurs: Kasper, Pimentel et Parker. L'émission stimulée est observée sur une transition de l'iode atomique, cette transition correspondant à une variation de niveaux d'excitation électronique. Ainsi, la photodissociation de trifluorométhiodine (de formule CF₃I) donne naissance à un atome excité d'iode, qui, en revenant à son état fondamental, donne naissance à une émission

Les mêmes résultats sont obtenus avec d'autres composés iodés, de formules chimiques diverses: C_2F_1I , $I-C_3F_7I$, CH_3I , C_2H_5I , $I-C_3H_7I$, $I-C_4H_9I$. Les émissions laser sont plus intenses avec les composés fluorés; leurs énergies diminuent pour les hydrocarbures à mesure que la complexité moléculaire croît.

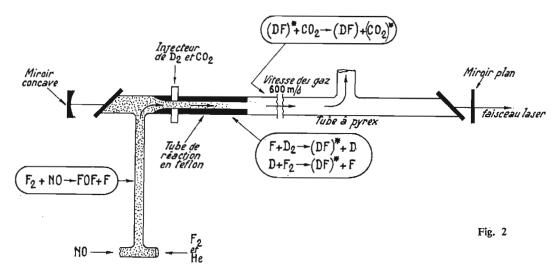
Avec CF₃I, les émissions laser ont atteint des puissances de 300 W, sur des durées de l'ordre de 10 us, pour une longueur d'onde de 1.315 um, avec une lampe à éclair de 2 600 joules.

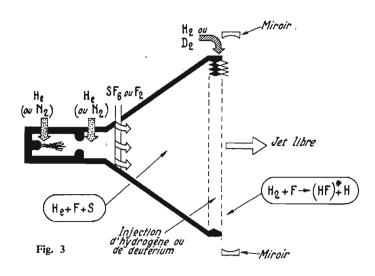
Polanyi et son équipe de l'Uni versité de Toronto ont étudie la transformation de l'acide iodhy drique HI, en présence de chlore, en acide chlorhydrique; cette transformation conduit aussi à un effet laser.

Aux Bell Telephone Laboratories, Pollack a cherché à optimiser la pression des divers composés fluorés pour obtenir les meilleurs effets lasers : il a obtenu ainsi des puissances de l'ordre du kilowatt, pendant quelques microsecondes : les optima de pressions sont :

- 24 torrs pour CH₃l;
- 116 torrs pour CF₃I;
- 88 torrs pour C₂F₃I; 128 torrs pour I-C₃F₇I;

avec une lampe à éclairs de joules; au dessus de 800 joules. Pollack a observé des phénomènes de saturation.


A la recherche de très hautes énergies, A.-J. de Maria a obtenu. par photodissociation de CF₃I, des impulsions de 100 kW. sur une durée de 1,5 us. La pression du melange est de 15 torrs, et le rendement global de 0,15 %.


Aux laboratoires de Bell Téléphone, M. A. Pollack a provoqué l'emission stimulée par photodissociation de sulfure de carbone (formule : CS₂) en présence d'oxygène. On obtient de l'oxyde de carbone (CO) dans un état d'excitation de vibration et de rotation, qui donne une émission laser de 10 à 20 us de durée. 15 us après le déclenchement de la lampe à éclair.

L'excitation vibrationnelle d'oxyde d'azote NO est obtenue par photodissociation de chlorure de mitrosyle NOCI. L'émission laser se produit sur des longueurs d'onde comprises entre 5.95 et 6,30 um; l'impulsion laser a une durée de 4 us avec une puissance de 10 W, pour un éclair de pompage de 1 000 joules.

L'excitation de vibration-rotation de CN est observée à partir de la photodissociation de C,N,: elle donne une émission laser sur des longueurs d'onde voisine de 5,2 um. Ce type de laser autorise un fonctionnement répété : cela est dû à la recomposition de deux groupes CN. en une molécule C₂N₂.

A.-H. Adelman, en 1966, a étudié la décomposition de vapeurs organiques par des impulsions provenant de lasers à rubis : des vapeurs de tetrachlorure de carbone, d'hexane, d'acétone, ..., à des pressions de 100 torrs ont donné des émissions sur les états excités des atomes de carbone (C, C+,C++), de chlore (Cl+) et d'oxygene (O+).

Chez Raytheon, Thomas Deutsch a utilisé une réaction de photodissociation avec l'oxychlorure de soufre (OCIS) pour obtenir l'effet laser. C. Pimentel et Karl L. Kompa ont obtenu l'effet laser dans un mélange d'hexachlorure d'uranium et d'hydrogene: l'éclair lumineux a pour résultat de dissocier un atome de fluor qui réagit avec l'hydrogène, pour donner de l'acide fluorique.

LE LASER CONTINU

Ce n'est qu'à la fin des années 60 qu'apparurent les premiers lasers chimiques continus l'Aerospace Corp., a étudié un laser à fluor-hydrogène nécessitant un chauffage par arc électrique; pour sa part, Avco Corp. a mis au point un laser similaire, fonctionnant dans un tube à choc. Au cours de la conférence de l'American Physical Society, qui s'est tenue au début de 1970, Terril A. Cool présentait le premier laser chimique portable travaillant en continu : développé sous l'égide de la N.A.S.A., il est bien entendu destiné aux applications spatiales. Ce laser tire entièrement son énergie des réactions chimiques internes, alors que les autres lasers requièrent au moins une source externe de pompage. Le laser de Cool est entièrement autonome.

Il s'agit là d'un laser à DF-CO₂ fonctionnant à la longueur d'onde correspondant à l'excitation de l'oxyde de carbone (soit 10,6 um). La puissance de sortie atteint 8 W. cor

respondant à un rendement de conversion voisin de 4 %. Selon Cool, il serait possible, en améliorant son laser, d'atteindre des rendements de 15 %, c'est-à-dire proches de ceux des lasers conventionnels à gaz carbonique.

Le laser à DF-CO, fonctionne avec du deutérium, du fluor, du gaz carbonique et de l'oxyde d'azote. Le processus débute par une reaction entre le fluor et l'oxyde d'azote, l'helium servant de catalyseur : des atomes libres de fluor sont ainsi libérés qui réagissent avec le deutérium pour donner du fluorure de deutérium (DF) dans un état d'excitation par vibration. Cette énergie d'excitation est alors transférée aux molécules de gaz carbonique (CO₂) qui se trouvent, de la sorte, dans un état de vibrationrotation.

T.-A. Cool a également étudié un laser chimique hydrogenefluor travaillant à des longueurs d'onde de 2,6 à 3 µm, ainsi qu'un laser deuterium fluor, à 3,7/4 um.

L'ATTENTION DES MILITAIRES!

Aux Etats-Unis, les lasers chimiques semblent devoir bientôt sortir de leur stade d'ensance : I'U.S. Army a, dans le courant 72, dépensé 6 millions de dollars pour ses travaux dans ce domaine; cette somme représente le double de ce qui a été dépensé, en 1971, par les trois armes, pour le développement des lasers chimiques.

A ces 6 millions de dollars, il faudrait ajouter les sommes (non publiées) consacrées en 1972, par l'U.S. Navy et l'U.S. Air Force, pour déterminer le montant global des investissements, outre-Atlantique, dans les lasers chimiques. Une autre source de financement du développement de ces lasers est l'A.R.P.A. (Advanced Project

Research Agency), l'équivalent en somme de notre D.R.M.E. Jus qu'alors seule l'A.R.P.A. finan çait les lasers chimiques : que les forces armees participent aussi, semble démontrer que les lasers chimiques sont sur le point d'être opérationnels.

L'U.S. Air Force appuie. actuellement, essentiellement les travaux de l'Aerospace Corp. Deux firmes américaines, l'United Aircrast Corp. et T.R.W. Inc. développent des lasers similaires à celui de l'Aerospace Corp., mais l'arc est remplacé par un phénomène de combustion.

Selon Donald J. Spencer, de l'Aerospace Corp., le laser chimique pourrait dans certains cas, remplacer le laser à CO,, deja industrialise : ainsi, un laser a fluor, dont le diluant est l'hydro gène, fournit 300 kJ d'énergie par kilogramme de gaz le tra versant; en comparaison, l'A.V. C.O. Corp. dispose d'un laser a CO₂, de puissance voisine de 60 kW et dont la puissance spécifique (rapport entre la puissance et le débit de gaz) n'est que de 4,4 kJ/kg. L'intérêt du laser chimique reside donc, pour une grande part, dans sa puissance spécifique très élevée.

C'est là un secteur technolo gique à surveiller!

Marc FERRET'11.

pour

défauts

d'aspect

EXCEPTIONNEL

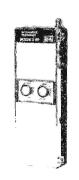
avec échange d'une vieille batterie

EXEMPLES: 2 CV. Type 6 V 1 44.15
4 L. Type 6 V 2 51.60
Simca. Type 12 V 8 69.95
R 8 R 10 - R 12 - R 16-204

VENTE SUR PLACE UNIQUEMENT **ACCUMULATEURS** ET EQUIPEMENTS

Tous autres modèles disponibles

2, rue de Fontarabie, 75020 PARIS Tél.: 797.40.92


et en PROVINCE

tél. (83) 68.02.32 Gravigny (Evreux), 38 ter. av. A.-Briand

Grenoble: tél. (76) 96.53.33 Lyon: tél. (76) 23.16.33 Mandelieu (Cannes): tél. (93) 38.82.11 Mantes: tél. 477.53.08 - 477.57.09 Mcntærgis: tél. (38) 85.29.48 Nancy: tél. (28) 52.00.11 Nice: tél. (93) 88.16.28 Pau: tél. (59) 33.15.50

UNE OCCASION UNIQUE DE VOUS EQUIPER A BON MARCHE..

29 et 29 bis, rue des Pavillons 92 PUTEAUX 506-25-13 - 506-29-31

Emetteur - Récepteur 3 watts OVERLAND 13475 450 F H.T.

Emetteur - Récepteur 5 watts OVERLAND 13675 650 F H.T.

VOTRE INSTALLATION **DE RADIO-**TÉLÉPHONES "OVERLAND"

PAR VOUS-MÊME POUR 2 900 F

COMPRENANT:

- 1 poste Fixe-Station base
- 1 alimentation secteur
- 1 poste mobile pour votre véhicule
- 1 antenne fixe
- 1 antenne mobile
- Accessoires
- Instructions de montage.

29, RUE DES PAVILLONS 92-PUTEAUX Tél.: 506-25-13 et 506-29-31

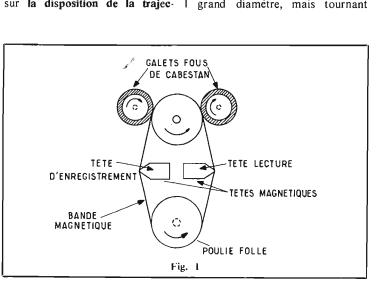
^{*} Le torr est une unité de pression. employée par les specialistes du vide. Il correspond au millimètre de mercure. On rappelle que la pression atmosphérique normale correspond à 760 mm de mercure (donc 760 torrs), et que l'unité légale de pression est le pascal : la pression atmospherique vaut 101 300 pascals.

OSSILIA DEIARADIO EDE TÉLÉVISION dévoilés aux débutants

LA CONSTRUCTION ET LE MONTAGE MODERNES RADIO - TV - ELECTRONIQUE

PROGRÈS ET TRANSFORMATION DES SYSTÈMES D'ENTRAÎNEMENT DU MAGNÉTOPHONE

OUS avons déjà étudié dans de récents articles des systèmes multiples d'entraînement des bandes magnétiques dans les magnétopho nes à bobines, et indiqué leurs caractéristiques et leur possibilitès. Nous avons signale également des recherches des dispositifs moins classiques, destinés à des usages particuliers, offrant des caractéristiques plus éla-borées et généralement appliquées sur des appareils semi-professionnels ou même professionnels. Dans ce domaine, les idées originales sont nombreuses et méritent d'être signalées, car, d'ailleurs, bien souvent, elles peuvent, par la suite, être adaptées même aux appareils d'amateurs.


Ces transformations portent sur la disposition de la trajec-

toire de la bande magnétique, les systèmes de variations ou d'inversion de vitesse, d'arrêt automatique; de commande à distance etc.

LE DEFILEMENT A BOUCLE

Nous avons déjà noté l'utilisation de systèmes d'entraînement de la bande magnétique en bobine comportant une ou plusieurs boucles avec un seul cabestan et deux galets-presseurs de chaque côté de ce cabestan, de façon à réduire les risques de pleurage.

Ce système de transport de la bande est dérive, en fait, des éléments employés dans les appareils utilisés dans les installations d'instrumentation digitale et comportent un cabestan de grand diamètre, mais tournant

avec une faible vitesse, avec un dispositif de filtrage mécanique spécial, et entraîné par un moteur synchrone ou synchronisé.

La bande magnetique est ainsi entraînée devant les têtes magnétiques de la manière habituelle, mais sa trajectoire n'est plus rectiligne mais constituée par une petite boucle, dans laquelle la bande défile avec une vitesse constante (Fig. 1).

Le pleurage et le scintillement sont réduits au minimum en maintenant la trajectoire libre de la bande aussi courte que possible, lorsqu'elle passe sur les têtes d'enregistrement et de reproduction. Le cabestan permet d'assurer une tension suffisante de la bande pour maintenir constamment le contact intime nécessaire entre la bande et les têtes, sans autre dispositif mécanique ou pneumatique.

Ce cabestan n'est pas de modèle lisse ordinaire, mais comporte deux régions de différents diamètres. Le galet presseur d'entrée de la bande est disposé de telle sorte qu'il presse la bande fortement sur des sillons de diamètre le plus réduit du cabestan, tandis que le galet presseur de sortie a une forme telle qu'il presse la bande fortement contre des rainures de plus grand diametre de ce même cabestan.

Cette différence de diamètres des deux parties du cabestan a pour effet de tendre et d'attirer une plus grande quantité de bande que celle qui est tournie à la boucle, et créer la tension mécanique nécessaire grâce à une légère élasticite de la bande elle-même. La tension est ainsi toujours maintenue d'une façon fiable dans les limites élastiques déterminées par la nature même du support.

Ce système de cabestan différentiel unique assure donc une vitesse de defilement plus constante sur les têtes ; la hande est entrainee à partir de la bobine débitrice entre le cabestan et un premier galet presseur; elle est ensuite entraînée sous forme de boucle fermée, par exemple, devant la tête d'effacement et d'enregistrement; elle passe autour d'un galet fou inférieur, puis vient s'appliquer contre la deuxième ou troisième tête de lecture. Elle est de nouveau appliquée entre le cabestan et un galet presseur de sortie, puis devant un guide fixe, avant d'aller s'enrouler, comme d'habitude, sur la bobine réceptrice.

En raison de l'emploi de ce cabestan différentiel déjà signale, ce systeme permet d'obtenir lui-même la tension utile dans l'intérieur de la boucle fermée, tandis que la partie extérieure de cette boucle peut être entraînée avec une tension beaucoup plus faible.

Les sources de pleurage extérieures à la boucle sont ainsi réduites et isolées et ce fait contribue beaucoup a la réduction des composants de pleurage sur la gamme inférieure à 300 Hz. Dans les systèmes d'entrainement ordinaires, la partie de la bande qui n'est pas supportée peut avoir environ une vingtaine de centimètres parfois; au contraire, dans ce dispositif, cette longueur est réduite à moins de 10 cm. On obtient ainsi egalement une grande reduction des composantes du pleurage.

Dans le système d'entraînement à boucle fermée, dont il évidemment d'autres existe dispositifs, tel que celui qui est indiqué sur la figure 2, la longueur de la bande qui n'est pas guidée est maintenue à une valeur très réduite, ce qui élimine les risques de déplacement vertical de la bande par rapport aux têtes.

Le cabestan est actionné à une vitesse constante au moyen d'une courroie ou d'un entrainement direct; deux galets presseurs sont utilisés combinés avec un galet fou rotatif, les têtes magnétiques et le cabestan, pour compléter les dispositions de la boucle fermée. Les têtes appliquent le ruban dans un trajet relativement court, entre le cabestan et le galet rotatif.

Le cabestan peut être entrainé par une grande variete de moteurs; il peut être contrôlé par un servo-mécanisme qui peut avoir la forme d'un tachymètre à disque photo-électrique; des guides exterieurs et intérieurs


assurent l'isolement contre les irrégularités de l'entraînement de la bande, dans la zone d'action des têtes magnétiques.

Le système d'entraînement à boucle encore plus complexe représenté sur la figure 3 utilise un cabestan creux entièrement métallique à entraînement direct, un moteur à courant continu à circuit imprimé, et un servo-système de cabestan très élaboré permettant d'obtenir une stabilité de la base de temps + 0,5 microseconde. Le moyeu du cabestan creux en aluminium comporte deux systemes de trois rangées de perforations, qui cou vrent avec une machine à vide une surface de 67 degrés.

Lorsqu'on applique un vide sur le noyau du cabestan la bande en contact avec sa surface est appliquée sous l'effet du vide et se déplace exactement à la même vitesse que le cabestan.

Une rangée de perforations est utilisée pour une bande 6,35 mm, et deux rangées pour une bande de 12,7 mm; puisque le noyau du cabestan a un diamètre relativement grand, supe rieur à 10 cm, des tolérances d'adaptation très précises peuvent être obtenues pendant la fabrication.

L'assemblage du cabestan est relié à un disque tachymetrique gravé photographique-ment; il est attaché directement à l'arbre du cabestan et le signal de sortie obtenu repré-

sente reellement la vitesse du cabestan.

Un moteur bidirectionnel à circuits imprimés à courant continu assure un couple d'entraînement élevé et la faible masse du système d'entraînement direct permettant la suppression des courroies, des engrenages, des galets-presseurs ou des poulies, assure le maximum de fiabilité.

Le mouvement de la bande à l'intérieur et à l'extérieur de la surface du cabestan est contrôlé d'une manière très étroite par l'utilisation d'une chambre à vide, et de guides lubrifiés par l'air.

L'emploi d'un système pneumatique avec chambre à vide assure ainsi l'entraînement d'une masse de bande très faible, car le poids de la bande dans la chambre à vide est négligeable.

La tension de la bande est obtenue dans d'excellentes conditions; elle est déterminée par le rayon de l'arc formé par la bandc dans la chambre à vide, et le niveau du vide. Puisque ces deux facteurs demeurent constants, la tension de la bande demeure également constante.

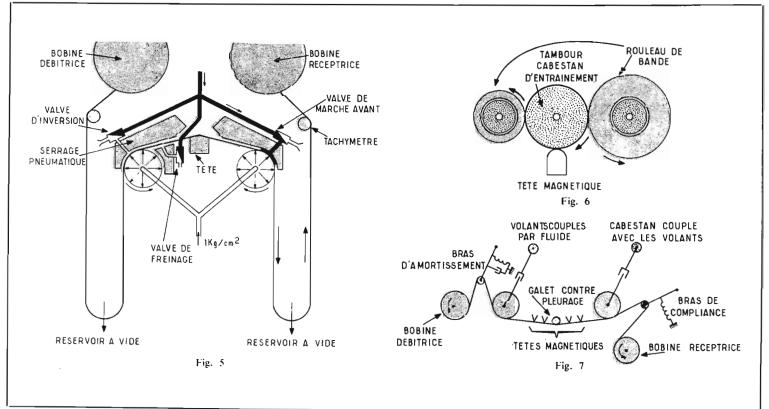
Enfin, le système de guidage est également satisfaisant. Puisque la chambre à la même largeur que la bande elle constitue un guide présentant des bords de largeur suffisante pour assurer un guidage satisfaisant. Les guides lubrifiés par l'air maintiennent la bande en alignement avec la trajectoire de la bande.

UN SYSTEME D'ENTRAINEMENT A TRAJECTOIRE REDUITE

A l'inverse, d'autres dispositifs permettent de réduire au minimum la longueur de la bande qui vient défiler devant les têtes magnétiques. On voit ainsi, sur la figure 4, un montage dans lequel la bande est appliquée sur le cabestan sous l'action de têtes magnétiques chargées par des ressorts. La surface du cabestan est recouverte d'une couche plastique d'un polymère pour assurer la résilience necessaire, de sorte que les têtes magnétiques ne risquent pas d'être usées ou endommagées lorsqu'elles appuient la bande contre la surface du cabestan. En outre, cette couche de polymère a pour but d'éviter les risques d'un glissement de la bande sur le cabestan.

Un autre dispositif antérieur de suppression de boucle comporte encore l'emploi d'un système pneumatique pour appliquer la bande contre la surface du cabestan; l'effet de vide est ainsi appliqué par des fentes usinées avec précision sur la surface du cabestan par l'intermédiaire du noyau creux.

La bande est ainsi pressee sur les fentes sous l'effet du vide, elle forme des sortes de petits ponts en travers des côtés des fentes; les têtes magnétiques viennent s'appliquer sur la bande en ces points. Les méthodes modernes d'usinage et la possibilité d'utiliser des matériaux plastiques pour revêtir la surface du cabestan attirent de nouveau l'attention sur ces systèmes à boucle réduite. Avec ce dispositif, la longueur de la bande qui n'est pas placée sur des supports est réduite à une valeur minimale absolue. Les risques de pleurage sont considérablement réduits.


Un type de moteur utilisé avec ces modèles d'entraînement est un moteur a induction à courant alternatif refroidi par l'air capable normalement de tourner dans les deux sens, et qui fournit constamment toute sa puissance pendant l'entraînement de la bande.

La vitesse de rotation du moteur du cabestan est contrôlée par la valeur de la force de freinage appliquée sur lui par un frein à disque à servo-contrôle. Un volant est relié à l'arbre du cabestan pour produire un effet d'amortissement avec un assemblage à frein contrôlé électriquement, ainsi qu'un tachymètre pour contrôler la vitesse du cabestan et de l'assemblage de contrôle du frein.

Le système d'entraînement professionnel à effet pneumatique souvent utilisé dans d'autres buts que l'inscription des sons, offre des avantages par rapport au dispositif à galets-presseurs et comporte, comme nous l'avons noté plus haut, des systèmes de cabestan avec effet pneumatique. La figure 5 montre un autre dispositif de ce genre. Un cabestan d'entraînement est placé de chaque côté de la tête magnétique combinée; ces cabestans tournent, constamment dans des directions opposées et au-dessus de chacun d'eux se trouve un dispositif pneumatique de pression qui est actionné fortement pour permettre un bobinage à grande vitesse, mais plus réduit en fonctionnement normal.

L'entrainement de la bande utilise une pression de 1 kg par cm² pour l'accélération et le freinage. De l'air, à une pression de 0,35 kg par cm², est envoyé dans chaque cabestan par l'intermédiaire de l'arbre central et il passe ensuite à travers la surface poreuse. Lorsqu'on freine la bande, elle est écartée des deux cabestans rotatifs, et vient s'appliquer contre le réservoir. La bande est freinée par une pression d'air de 6 kg par cm², et elle vient s'appliquer contre une surface supérieure fine.

Un système de commande de démarrage devie l'air qui provient du frein, sur l'un ou l'autre des systèmes de fixation pneumatique, suivant la direction désirée. La pression d'air de l kg par cm², provenant du système de fixation supprime le film d'air de séparation entre le cabestan et la bande. L'accélération de la bande est presque réellement linéaire, avec un minimum de pointe de force sur la bande durant l'accélération.

L'alimentation en air pour l'entraînement en avant et en arrière et l'opération de freinage, est assurée par trois valves à fonctionnement rapide commandées par des circuits à éléments semi-conducteurs. Les arbres des cabestans sont entraînés par courroie à partir d'un moteur commun.

Les servo-moteurs des bobines débitrice et réceptrice sont entraînés par des moteurs à courant continu, avec alimentation redressée en courant alternatif, obtenue au moyen de redresseurs contrôlés au silicium. L'angle de conduction varie suivant le couple nécessaire.

Les reservoirs à vide agissent comme des tampons entre l'entraînement des cabestans et les bobines de bande magnétique. Des transducteurs pneumatiques produisent des signaux d'erreur proportionnels au déplacement de la boucle de bande dans le réservoir et la cadence des signaux est déterminée par des tachymètres couplés avec les deux tambours d'alimentation.

Ce système d'entraînement assure une réponse rapide avec la stabilité nécessaire, on utilisc des freins à tambour actionnés par solénoïdes; ceux-ci permettent au tambour de tourner lorsque les bobinages de ces solénoïdes sont excités, tout en assurant le freinage.

La vitesse de défilement peut être très élevée; la durée de démarrage et d'arrêt ne dépasse pas 4 ms et parmi les avantages de ce système pneumatique, on peut surtout noter la diminution de l'usure de la bande, et un frottement plus réduit, grâce à la distribution uniforme des forces d'accélération sur toute la bande.

UN SYSTEME ULTRA-SIMPLIFIE

Dans ce même domaine, un autre dispositif permettant d'obtenir une grande vitesse uniforme de défilement et d'enregistrer des frèquences très élevées, a été étudié depuis quelques années. Il a pour but également d'augmenter la vitesse de défilement de surface des bandes magnétiques, tout en conservant un entraînement absolument uniforme.

Dans les systèmes d'enregistrement habituels, en effet, la bande n'est pas utilisée seulement comme support de l'inscription magnétique, mais aussi comme élément de couplage d'énergie dans le système d'entraînement, avec emploi d'éléments rotatifs massifs de synchronisation et maintien d'un degré élevé de précision du contact entre le tête magnétique et la surface de la bande, ainsi que de la constance instantanée ou à long terme de la vitesse de défilement.

Un certain nombre des composantes d'énergie couplées par la bande augmentent comme le carré de la vitesse, tandis que la stabilité doit être maintenue avec une précision supérieure au micron.

Lorsque la vitesse augmente, l'accélération devient un facteur dominant; en raison de la fragilité du support, il faut une masse de bande plus importante pour permettre cette accélération. Cette masse augmente le diamètre de la galette de ruban, avec une perte résultante de temps et de rendement, et une augmentation d'inertie.

D'autres problèmes se posent egalement dans ce domaine, et ont déjà été signalés plus haut. La consommation de la bande avec limitation de la vitesse et de l'accélération, la durée de lecture, les prix, les problèmes de guidage des bords de la bande, car ce guidage et l'alignement des têtes par rapport à la bande deviennent progressivement plus difficiles pour les vitesses élevées, et pour un nombre de pistes de plus en plus grand. Des vitesses élevées augmentent les vibrations. le pleurage, les déplacements de la bande dus à un film d'air induit, et le glissement de la

Un mécanisme simple, utilisable tout au moins pour les usages particuliers, est représenté par la figure 6. Il permet des accélérations et des décélérations très rapides, et une inversion de sens de défilement.

Ces resultats proviennent du fait que pendant le fonctionnement, la bande peut plutôt être comparee au revêtement d'un tambour magnétique supporté par des dispositifs très fixes, et disposé avec précision relativement à la bande magnétique d'enregistrement et de reproduction sur un cylindre rotatif, au lieu d'être formée en une boucle ouverte, se déplaçant sur des poulies variées, des cabestans et des guides.

Par suite, dans ce système, la bande n'a pas un rôle de couplage mécanique suivant la remarque précédente, mais joue uniquement le rôle de support d'enregistrement.

Par suite, elle n'est pas soumise à des forces variables, des tensions ou des déplacements, qui produisent souvent du pleurage et du scintillement. Ainsi, la puissance mécanique est utilisée dans un système plus rigide et plus compact ; un moteur actionne le tambour cabestan central, assurant sur sa périphérie l'enroulement de la bande. Il appuie fortement sur les deux galettes de bande, et détermine leur rotation dans des directions nècessaires.

La pression de la bande sur les rouleaux évite l'introduction de l'air entre les couches, et il en résulte un enroulement beaucoup plus dense, qui n'exige pas l'emploi des systèmes habituels de bobines à flasque, ce qui réduit l'inertie et permet d'augmenter l'accélération. L'importance des accélérations obte nues montre, en outre, qu'il faut beaucoup moins de bande pour atteindre une vitesse donnée, que dans un système d'entraînement classique.

Par suite du contrôle précis de la position de la bande par rapport à la tête et, parce qu'il n'y a pas de problème de guidage difficile des bords de la bande, même à grande vitesse, un grand nombre de pistes peuvent être enregistrées sur une même largeur de bande. C'est ainsi que sur une bande magnétique de 12,7 mm, on a pu enregistrer 40 pistes séparées de différents types.

LE CONTROLE DE LA TENSION DE BANDE

Dans tous ces systèmes, on s'efforce également d'obtenir des dispositifs de tension de la bande et de freinage satisfaisants. Nous avons déjà signalé, par exemple, le dispositif représente sur la figure 7, et qui a pour but d'obtenir une tension constante de la bande avec un freinage uniforme, quels que soient l'usure des freins et le coefficient de frottement. Le couple du moteur est contrôlé pour assurer une tension constante dans tous les modes de fonctionnement, en assurant unc tension uniforme de la galette de bande sur les bobines débitrice et réceptrice et une pression constante de la bande sur les

La dissipation d'énergie dans les systèmes de transport a été réduite en éliminant l'emploi de servo-systèmes complexes et de dispositifs pneumatiques. L'air n'est donc pas utilisé dans la machine, ce qui évite, d'ailleurs, la possibilité d'introduction d'abrasifs contenus dans l'air, et agissant sur les composants internes.

Les troubles de défilement à basse fréquence de grande amplitude sont généralement produits, rappelons-le encore, par les bobines débitrice et réceptrice, par suite des excentricités presque inévitables au moment de l'enroulement de la bande sur la bobine. Des perturbations à haute fréquence plus réduites sont déterminées par tous les éléments, qui se trouvent sur le trajet de la bande, y compris les têtes magnétiques, et lorsque la bande vient frotter sur eux. Toutes ces perturbations produisent du pleurage ou du scintillement.

Un dispositif électrique représentant le phénomène correspondant au défilement de la bande peut être établi en supposant l'analogie de la vitesse de la bande avec une tension électrique, l'analogie de la tension de la bande avec un courant, l'analogie de la viscosité du fluide avec une résistance, l'analogie de la masse avec une capacité, et celle de la constante du ressort avec une inductance.

Cette analogie électrique, représentée sur la figure 8, montre que le problème de la suppres sion du pleurage est analogue à celui du filtrage des ondulations dans un système d'alimentation. Deux sources d'alimentation formées par les bobines sont en parallèle, et l'ondulation est filtrée à la partie centrale, qui correspond au point central entre les têtes. Des éléments de circuit variés fournissent un filtrage passebas pour permettre une vitesse uniforme de la bande au-delà des têtes.

Des volants couplés par un fluide dérivent les ondulations vers la masse, et des bras de compliance s'opposent au passage des perturbations, même avant qu'elles atteignent les volants. Les guides rotatifs disposés entre les têtes court-circuitent les perturbations à haute frèquence, également vers la masse. Les éléments de résistance dans le circuit, tels que les systèmes de couplage par fluide, maintiennent un facteur Q très faible, pour assurer la meilleure réponse du filtre.

La figure 7 montre ainsi la disposition de ce système d'entraînement à tension constante, que nous avons déjà eu l'occasion de signaler, avec les bobines débitrice et réceptrice, à droite et à gauche, le bras porte-galet d'amortissement, les deux volants rotatifs couplés par fluide, le cabestan, également à couplage par fluide, l'arbre supplémentaire de compliance et, au centre, entre les têtes, un galet destiné également à éviter les effets de pleurage.

MODULES SCIENTELEC EN KIT

CONTROLES ET réglages

ES amplificateurs Elysée ont depuis longtemps conquis le vaste univers de la haute fidélité et ont été sans cesse améliores, parallèlement à l'évolution technologique.

Dans ce domaine, ils n'en sont pas moins à la pointe de la technique basse fréquence.

L'amplificateur « Elysée » en kit offrira de nombreuses satisfactions à l'amateur de montages électroniques autant sur le point de vue technique que personnel.

Les amplificateurs Elysée ont subi récemment de nombreuses améliorations telles que :

- L'utilisation de composants professionnels: transistors au silicium.

BDY 56 -
$$V_{CEO} = 120 \text{ V}$$
.
 $I_{C} = 15 \text{ A}$
Ptot = 115 W.
 $f_{T} = 10 \text{ MHz}$.

- Une rationalisation du câblage afin d'éviter les accrochages et les ronflements indésirables et permettant d'identifier les différents circuits, d'où une très grande fiabilité.

- Le contrôle de chaque composant dès son arrivée en fabrication permettant d'éliminer immédiatement toute cause de défectuosité certaine.

- Une fabrication très soignée et très suivie des modules kit Elysée en augmente la fiabilité.

Les différents modules permettant la réalisation des « kits » Elysée sont précâblés et préréglés, ce qui permet à tout amateur sachant souder mais démuni de connaissances techniques au-Page 170 - Nº 1392

tant que d'appareils de mesure, de realiser neanmoins un appareil fonctionnant à la première mise sous tension avec les performances d'amplificateurs de série pour autant que les instructions de montage aient été suivies à la lettre.

Les indications que nous donnons ci-dessous s'adressent au technicien qui se trouverait avoir à régler ou à améliorer un appareil qui aurait subi un dommage quelconque. Ce sont les instructions utilisées en usine pour le réglage en série des modules. Elles permettent de vérifier la mise en route d'un appareil ou de le dépanner en cas d'accident.

REGLAGES

ELYSEE 15

Il se compose d'une alimentation non stabilisée (AL3N), de deux modules de puissance 15 W (SC30P) et de deux préamplificateurs (SC20A).

L'alimentation ALN3 (Voir schéma - Fig. 1)

Après avoir débranché les fils en sortie de l'alimentation, mettez l'amplificateur sous tension.

La tension, en entrée de l'alimentation, définie par l'enroulement secondaire du transformateur, devra être de l'ordre de 38 V alternatif.

L'alimentation fonctionnant à vide, mesurez la tension d'alimentation des modules de puissance sur les cosses communes n^{os} 2 et 3, qui devra être de l'ordre de + 50 V continu.

La tension d'alimentation des préamplificateurs sera mesurée sur la cosse nº 1 et aura pour valeur + 30 V continu en charge (+ 50 V continu à vide).

Les modules de puissance SC30P (Voir schéma - Fig. 2)

Après avoir arrêté votre amplificateur, reliez la borne positive de votre module à la borne positive + 50 V de l'alimentation, et la liaison négative.

L'interrupteur A sera sur la position 1, c'est-à-dire avec l'ampèremètre en circuit.

Mettez l'amplificateur tension, le voltmètre aux bornes du module indiquera la tension d'alimentation: + 50 V continu.

Injectez à l'entrée, à l'aide d'un générateur basse fréquence, un signal sinusoïdal de l kHz que vous doserez jusqu'à l'obtention de la limite d'ecrêtage lue en sortie à l'aide de l'oscilloscope.

Laissez le module chauffer jusqu'à sa température de fonctionnement, c'est-à-dire au bout de deux ou trois minutes.

L'ampèremètre affichera une intensité de fonctionnement de l'ordre de 1,5 A environ.

Vérifiez à l'aide de l'oscilloscope la symétrie de l'écrêtage et l'absence de distorsion sur le signal amplifié.

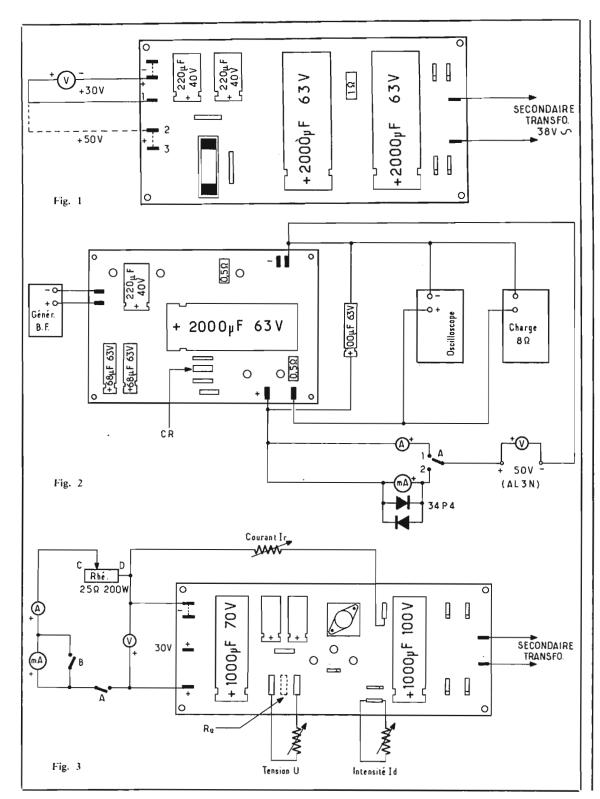
Mesurez la puissance de sor-

tie en fonction de la tension alternative de sortie suivant la for-

mule
$$P = \frac{U^2}{R}$$
.

Coupez le signal provenant du générateur, mesurez le courant de repos en passant l'interrupteur sur la position 2.

Cette opération étant très délicate, le milliampèremètre sera protégé par 2 diodes 34P4 en opposition, en parallèle sur son cadre mobile.


Le courant de repos étant à une valeur fonctionnelle, le milliampèremètre affichera une intensité de repos de l'ordre de 7 à 14 mA, et devra rester stable ou descendre après fonctionnement à pleine puissance. Le courant de repos défini par la résistance CR, augmente lorsque l'on augmente la valeur de cette

La même méthode de réglage sera employée pour le deuxième module de puissance.

Les préamplificateurs SC20A.

Ils alimentent en + 30 V continu, à partir de l'alimenta tion et les différents contrôles seront sonores donc finals.

Il est à noter que suivant certaines régions, des interférences en haute fréquence viennent perturber l'écoute d'un disque par exemple. Ces perturbations se situant au niveau des préamplificateurs, un condensateur de 1 000 pF sera soudé entre la base et le collecteur du dernier transistor et une résistance de 4,7 k Ω en série avec l'entrée.

Amenez progressivement le curseur du rhéostat du point D au point C, l'ampèremètre affichera une intensité correspondant à l'intensité de disjonction.

Faites varier la boîte à décade Id qui définira la résistance pour obtenir une disjonction de 1,8 A. Cette résistance sera comprise entre 10 et $20 \text{ k}\Omega$, à la place de la boîte à décade Id.

Ouvrez l'interrupteur B, le milliampèremètre affichera une intensité très faible dite résiduelle; elle devra être de l'ordre de 30 à 40 mA et sera déterminée en faisant varier la boîte à décade Ir qui définira la résistance de l'ordre de 27 à $56~\mathrm{k}\Omega$ à souder sous le circuit entre la base et le collecteur du transistor BDY56C.

Une vérification finale s'effectuera en ne conservant dans le circuit que le rhéostat de charge et les appareils de contrôle.

Les modules de puissance SC30P.

Voir Elysée 15.

Les préamplificateurs SC20A.

Voir Elysée 15.

ELYSEE 30

Il se compose d'une alimentation stabilisée avec disjonction électronique (ALSP255), de deux modules de puissance 30 W (SC30P) et de deux préamplificateurs (SC20A).

L'alimentation ALSP255.

Voir ALSP250 Elysée 15, mais la tension doit être règlée à 55 V continu.

Les modules de puissance SC30P.

Voir Elysée 15.

ELYSEE 20

Il se compose d'une alimentation stabilisée avec disjonction électronique (ALSP250), de deux modules de puissance 20 W (SC30P) et de deux préamplificateurs (SC20A).

Alimentation ALSP250 (Voir schema - Fig. 3)

La tension en entrée de l'alimentation définie par l'enroulement secondaire du transformateur devra être de l'ordre de 50 V alternatif environ.

L'alimentation ne devra pas débiter : interrupteur A ouvert. Faites varier la boîte à décade de tension U qui définira la résistance Ru pour obtenir une tension de 50 V continu en sortie. Cette résistance sera comprise entre 5 et $7~k\Omega$, et sera soudée en Ru.

Positionnez le curseur du rhéostat (25 \Omega 200 W en D); fermez les interrupteurs B et A.

TABLEAU ÉQUIVALENCE DES TRANSISTORS

Références	ÉQUIVALENTS					
BC204	BC116	BC126				
BC206	BC154	BC281C	BC205			
BC207	BC125	,				
BC208	BC113					
BSW43A	BC117	BC145	2N3416			
BDY56	180T2B	BDI17				
2N1893	2N 1889	B142	81DT2	B119		
2N2904	2N2905	BC143	D29A4			

Les préamplificateurs SC20A.

Voir Elysée 15.

On remarquera que les modules de puissance sont tous des SC30P donc le même circuit. Pourtant il ne faut pas croire à la compatibilité d'un module 15 W en 30 W.

L'appellation 15, 20 ou 30 W donnée après les différents réglages est très précise et permet de connaître toutes les caractéristiques de tous les modules de puissance. Il serait donc très dangereux de vouloir sur-alimenter un module 15 W pour obtenir un 30 W.

BONDÉCOUPER I Α Je désire recevoir les 7 vol. complets du "Diapo-Télé-Test" avec visionneuse incorporée et reliure plastifiée.

NOM

ADRESSE

CI-INCLUS un chèque ou mandat-lettre de 88,90 F TTC frais de port et d'emballage infra compris.

L'ensemble est groupé dans une véritable reliure plastifiée offerte gracieusement. BON à adresser avec règlement à

INSTITUT FRANCE ÉLECTRONIQUE 24, r. Jean-Mermoz - Paris 8° - BAL. 74-65

CARACTÉRISTIQUES TECHNIQUES

Modėle	Puissance en régime permanent	Impédance	Taux d'amortis- sement	Distorsion à I W	Distorsion à Puiss. max.	Limensions	Poids
Élysée 15	2 x 15 W Eff.	4-8	80	0,1 %	0,1 %	$400 \times 270 \times 75 \text{ mm}$	7 kg
Élysée 20	2 x 20 W Eff.	4-8	85	0,1 %	0,1 %	$400 \times 270 \times 75 \text{ mm}$	7 kg
Élysée 30	2 x 30 W Eff.	4-8	90	0,1 %	0,1 %	$400 \times 270 \times 75 \text{ mm}$	7 kg

Modèle	Brui	t de fond dB.	Bande passante	Temps de Disjonction de l'alimentation	
	ampli	ampli + préampli	à puissance nominale		
Elyséc 15 Elyséc 20 Elysée 30	- 90 - 100 - 100	- 65 dB - 65 dB - 65 dB	30 Hz à 30 kHz 20 Hz à 30 kHz 20 Hz à 30 kHz	150 ns 150 ns	

CARACTÉRISTIQUES COMMUNES CINQ ENTREES STEREO

PARTIE PRÉAMPLIFICATEUR

	Impédance	Sensibilité	Correction de gravure
P.U. magnétique P.U. céramique Micro Radio Tête de magnétophone (platine mécanique)	50 k 50 k 50 k 50 k 50 k	4 mV 130 mV 1,4 mV 140 mV 4,5 mV	R.I.A.A. ± 1 dB R.I.A.A. ± 1 dB Linéaire ± 1 dB ° C.C.I.R. + 1 dB de 40 Hz à 15 kHz

Fonctions: Stéréo - Stéréo inversée - Mono A + B - Mono A - Mono B - Commande « Monitoring » incorporée • Les modèles Elysée « 20 » et « 30 » sont protégés par une alimentation à disjonction et réarmement automatiques • Sorties commutables pour 2 ou 4 HP. Prise casque • Corrections « graves » ± 16 dB à 20 Hz ● Corrections « aigus » ± dB à 20 kHz ● Corrections « physiologiques » variables 23 dB d'atténuation à 1 kHz max. • Filtre pass haut coupure à 30 Hz 14 dB par octave • Filtre pass bas coupure à 10 kHz 18 dB par octave.

CONTROLE FINAL

Le contrôle final sera un contrôle permettant de vérifier l'appareil monté.

La mise sous tension de l'amplificateur est indiquée par le voyant lumineux.

Le contrôle des différentes corrections de l'appareil sera effectué à l'aide d'un bruit blanc provenant d'un tuner FM branché à l'entrée Radio.

Vérification des corrections.

La méthode consiste à comparer les deux canaux A et B dans des fonctions analogues.

Potentiomètres médium et balance au milieu de leur course, graves et aiguës au minimum, en fonction des différentes positions du volume, les deux canaux A et B doivent être identiques. L'action des filtres ne sera pas importante.

 Potentiomètres médium, balance, graves et aiguës au milieu de leur course, en fonction des différentes positions du volume, les deux canaux A et B doivent être identiques et aucun accrochage de quelque nature que ce soit ne doit apparaître à l'oscilloscope. L'action des filtres sera

plus importante que précédemment.

- Potentiomètre médium et balance au milieu de leur course, graves et aiguës au maximum, en fonction des différentes positions du volume, les deux canaux A et B doivent être identiques et sans accrochage. L'action des filtres des potentiomètres médium, graves et aiguës se fera sentir à tous les niveaux d'écoute.

Vérification des différentes entrées et sorties.

Vérifiez les entrées et les sorties et leur commande.

(La description complète de ces amplificateurs a été publiée dans les numéros suivants du Haut-Parleur : Elysée 20 : nº 1168; Elysée 15 : nº 1182; Elysée 30 : nº 1219.

MATÉRIEL NOTAMMENT VENDU CHEZ : .

26 ter, rue Traversière, 75012 PARIS Tél.: 344-67-00 - 307-47-11

Ampli SC3P Préampli SC3A **48**.50 POUR 20 W Ampli SC20P 126.10
Préampli SC20A 97.00
Ali disjonctable régulée avec transfo.
ALSP250 (prévue pour mono et stéréol. **126**,10 **155**,20 POUR 30 W Préampli SC20A 97.00

POUR 45 W Ampli SC45P Préampli SC20A stéréo)

POUR 120 W (HP 1318 p. 51)

AMPLIS SCIENTELEC EN KITS COMPLETS

avec châssis, coffrets, modules câblés. Toutes les prises, potentiomètres et fils, livrés avec calco-schéma.

ELYSEE EK 15 - 2 × 15 W eff. ... 669.00

ELYSEE EK 20 - 2 × 20 W eff. ... 824.00

ELYSEE EK 45 - 2 × 45 W eff ... 1115.00 ELYSEE EK 30 - 2 × 30 W eff 931,00 ELYSEE EK 45 - 2 × 45 W eff . . 1 115,00

RELAIS ACOUSTIQUE SIMPLE

N relais acoustique ou oreille électronique peut constituer un dispositif très simple de télécommande à distance. En effet, pour actionner la fermeture des contacts d'un relais il suffit d'utiliser un petit sifflet ou bien de parler à une certaine distance du récepteur.

Outre la télécommande de jouets ou autres systèmes, le relais acoustique peut également faire office de dispositif d'alarme, ou bien de mise en service instantanée d'un magnétophone lors de l'enregistrement de conversation ou débat. On peut dans le cas de télécommande à distance monter un sélecteur pas à pas actionné par le relais terminal de telle sorte que trois ou quatre claquements de mains répétes mettent en service un appareil quelconque. Comme on peut le constater les applications sont nombreuses et la simplicité du montage incite à entreprendre sa réalisation. Ce montage est du reste tiré de la boîte d'initiation à l'électronique « Heath kit ».

LE SCHÉMA DE PRINCIPE

Il ne fait appel qu'à trois tran sistors très courants et peu coûteux, le relais restant la pièce maîtresse la plus chère.

On utilise un haut-parleur de 10 à 15 cm de diamètre comme élèment de liaison. La surface utile de la membrane est en effet préférable au point de vue sensibilité à celle d'un microphone ordinaire, au niveau du prix de revient de l'ensemble. En contrepartie, l'adaptation d'impédance est plus délicate et nécessite l'emploi d'une bobine mobile de 125 Ω.

Dans le cas d'une utilisation d'un haut-parleur d'impédance courante 2,5 à 8 \(\Omega\), il convient d'intercaler un transformateur de sortie comme l'indique le schéma de la figure 2.

Le haut-parleur ainsi utilisé comme microphone capte les signaux sonores et les transforme en courant BF appliqué par l'intermédiaire de C₁ à la

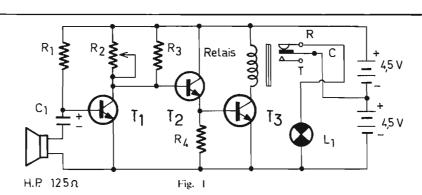
base du transistor T₁. Ce dernier est polarisé de telle manière qu'en l'absence de signal sonore il est bloqué.

En parallèle sur la résistance de charge R₂ de T₁ est prévue une autre résistance variable, destinée à ajuster le point de fonctionnement et à régler la sensibilité générale du dispositif.

La liaison vers l'étage suivant s'effectue directement. Il en résulte que le transistor T₂ voit sa base polarisée positivement par l'intermédiaire de R₃ et qu'en conséquence il est rendu conducteur. Le transistor T₃ est lui monté avec sa base reliée à l'émetteur de T₁. De ce fait la jonction émetteur-collecteur de T₂ conductrice rend positive la base de T₃ ce qui a pour conséquence de

faire coller le relais placé dans le circuit collecteur de T_3 ainsi saturé.

Comme l'ampoule indicatrice est placée dans le circuit repos des contacts du relais, elle reste éteinte.


Par contre à l'apparition d'une impulsion sur la base de T₁, provoquée par un signal sonore quelconque, il se produit une changement d'état du transistor T₁. Ce demier devenu conducteur, entraîne la base de T₂ à un potentiel voisin de son émetteur et il en résulte que le transistor T₂ se bloque. Le transistor T₃ est alors également bloqué car sa base n'est plus positive grâce à la résistance R₄. Dans ces conditions le relais n'est plus excité et l'ampoule s'illumine.

La tension d'alimentation du dispositif peut varier de 6 à 9 V suivant les caractéristiques du relais terminal.

RÉALISATION PRATIQUE

En raison du faible nombre de composants utilisés, le montage peut très facilement s'exécuter sur une plaquette perforée d'isorel ou de bakélite. Nous recommandons cependant l'emploi des plaquettes à trous métallisés et perforés au pas de la grille internationale de 5,08 mm. L'utilisation d'une plaquette Veroboard est également très utile.

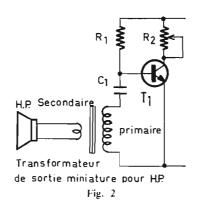
(suite page 177)

LISTE DES COMPOSANTS

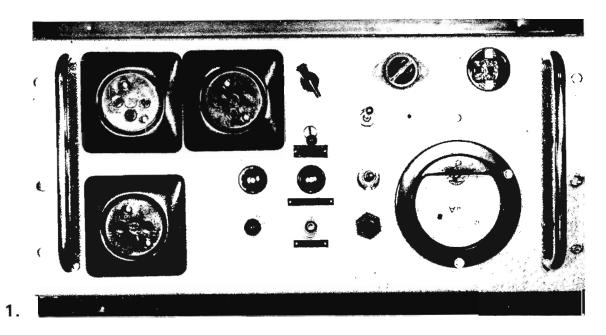
 $C1 = 100 \ \mu F/9 \ V$ tantale. $R_1 = 100 \ k\Omega$ (marron, noir. jaune).

 $R_2 = 47 \text{ k}\Omega$ ajustable.

 $R_3 = 15 \text{ k}\Omega$ (marron, vert, orange).


 $R_4 = 1.8 \text{ k}\Omega \text{ (marron, gris, rouge)}$

rouge). T_{2} , $T_{1} = BC108$, BC107, BC109, AC127.


 $T_3 = 2N2222, 2N1711, AC127, AC187.$

Relais 280 (2/9 V ou relais Siemens, type télécommande.

H.P. bobine mobile 125 (2) ou H.P. avec transformateur de sortie miniature.

FLASH TRIPLE DE STUDIO BON MARCHÉ ET FACILE A CONSTRUIRE

RAND amateur de photo et surtout de portraits en couleur pris en studio, mais disposant de moyens financiers limités, l'auteur a été amené à construire son propre équipement de flashs électroniques.

En effet, l'utilisation de lampes survoltées n'est pratiquement pas possible en couleur pour les raisons suivantes :

- La température de couleur de ces lampes est trop basse; dans ces conditions le négatif est tellement mal impressionné qu'il n'est plus possible de rebalancer les couleurs au tirage.
- La température de couleur peut évidemment être remontée en plaçant un filtre bleu devant l'objectif. Malheureusement, l'utilisation d'un tel filtre oblige à augmenter notablement le temps de pose ou à ouvrir le diaphragme en conséquence.
- Le flux lumineux dispensé par les lampes survoltées est inférieur aux lampes flash à moins de pouvoir tircr des kilowatts du réseau.
- A cause des deux raisons précédentes, il faut travailler à des vitesses faibles et à grande ouverture d'où perte de netteté,

protondeur de champ insuffisante et risque de bougé du sujet photographié.

 L'utilisation des lampes survoltées est assez pénible à supporter par le sujet.

Si la réalisation d'un flash portatif n'est pas très rentable vu les prix auxquels ils sont offerts dans le commerce et la difficulté de se procurer ou de réaliser du matériel miniaturisé, par contre, la réalisation d'un flash de studio est très rentable et tres facilement réalisable avec du matériel courant.

L'appareil réalise possède les caractéristiques suivantes :

- 3 prises flash 50 100 150 joules.
- Eclairage par lampes pilote halogènes et (ou) éclairage stroboscopique pour étude de l'éclairage et la mise au point.
 - Stabilisation électronique.
 Charge en moins de 15
- secondes.

 Prise pour déclencher un
- quatrième flash portatif courant.

 Très faible courant dans le contact de l'appareil photo.
- -- Faible prix : moins de 500 F.

Les circuits périphériques suivants ont été également mis au point :

- Flashmètre intégrateur avec mémoire.
- Minuterie de 20 m/s retardant l'éclair pour l'utilisation d'appareils photos synchronisés uniquement pour les lampes magnesiques (sans contact X).

L'appareil décrit ci-après ne fait peut-être pas appel aux techniques de pointe, mais les critères de fiabilité, de prix, de simplicité et surtout la possibilité d'utiliser du matériel courant radio-TV l'ont emporté sur le reste.

Afin de sérier les difficultés, le fonctionnement sera d'abord décrit dans le cas d'un flash simple à une lampe, puis étendu au cas d'un flash triple.

Ce flash à une lampe pourra d'ailleurs être réalisé dans un chassis assez grand, afin d'être complété par la suite.

La figure 1 donne le schéma du circuit. Pour délivrer son éclair, le tube flash doit être connecté à un réservoir d'énergie constitué par le condensateur C₁ charge à une tension continue. D'autre part, l'électrode de déclenchement doit recevoir une impulsion de quelques milliers de volts délivrée par le transformateur T₂ au moment du déclenchement de l'appareil photo.

La charge du condensateur C_1 se fait au moyen du redressement du réseau par les diodes D_1 à D_8 et les condensateurs C_2 et C_3 , à travers la résistance R_1 qui limite le courant de charge.

Le stabilisateur a pour but d'obtenir une tension constante aux bornes de C₁. Le principe consiste à dériver dans le tube EL34 un courant d'autant plus important que la tension tend à augmenter aux bornes de C₁.

La chute de tension supplémentaire ainsi créée aux bornes de la résistance R_1 ramène la tension de C_1 à une valeur constante.

La tension d'écran est fournie par D₉ et C₅.

Le tube de référence 85A2 alimente par D₁₀, C₄ et R₇ donne la tension de référence de — 85 volts à laquelle est comparée la tension aux bornes de C₁ et dont la différence commande la grille du tube EL34.

Le circuit de déclenchement est constitué par le thyratron PL2D21.

L'enroulement S_4 avec D_{11} et C_5 fournit une tension continue qui à l'état de repos bloque le thyratron. A la fermeture du contact de l'appareil photo une

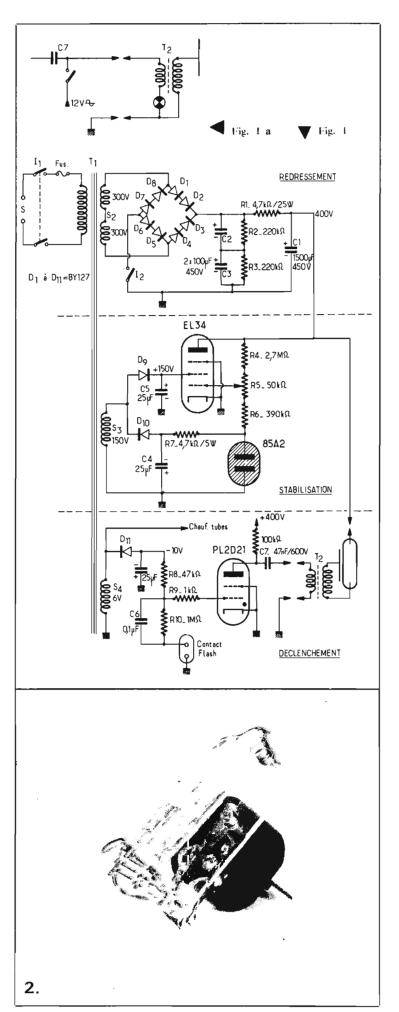
Page 174 - Nº 1392

impulsion positive est transmise à la grille du thyratron qui conduit pendant un court instant. Sa tension plaque baisse brusquement et à travers C, est envoyée une impulsion négative au transformateur T2. Au secondaire apparaît l'impulsion de plusieurs milliers de volts qui amorce le tube à décharge. On notera que l'enroulement S, fournit également la tension filament du tube EL34. Ce filament présentant une inertie thermique non negligeable, il est nécessaire d'en assurer le chauffage avant de mettre le redresseur en service. C'est la raison d'être des interrupteurs I₁ et I₂ qui seront enclenches dans l'ordre à trente secondes d'intervalle. Sans cette précaution, la tension aux bornes de C1 risquerait d'atteindre une valeur supérieure à sa tension de service.

Le schéma de principe étant décrit, nous allons passer en revue les différentes pièces, ainsi que la façon de les monter.

La première pièce à acquerir est le tube à décharge. Il se présente sous la forme d'un tube droit ou en forme de U, parfois même sous une forme circulaire. Il est très fragile et son montage devra être tel qu'il ne soit soumis à aucune tension mécanique. Il faut éviter de le toucher avec les doigts, tout comme pour les lampes halogènes et de toute façon avant la mise en route, il est bon de le dégraisser avec un tampon d'ouate imbibé d'alcool.

La photo 2 donne une façon de monter le tube à décharge.


Les tubes sont caractérisés par leur tension minimum de fonctionnement et le nombre de joules ou watts-secondes qu'ils peuvent dissiper. On choisira un tube qui fonctionne sous 400 volts.

Le nombre de joules servira à calculer la valeur maximum du condensateur réservoir C, suivant la formule:

Nb joules = 1/2 CV 2 (C en farads, V en volts).

Donc, un tube de 1500 joules pourra être utilisé sous 450 V avec un condensateur réservoir maximum d'environ I 500 µF.

Une pièce spéciale dont il faut disposer est le transformateur donnant une impulsion de quelques milliers de volts servant à amorcer le tube à décharge. Un vieux transformateur de sortie ligne T.V. fera parfaitement l'affaire. Le primaire est constitué par l'enroulement « bobines de déflection » et le secondaire par l'enroulement « T.H.T. ». Si, comme on le verra plus loin, on désire coupler au flash une lampe pilote, la bobine primaire sera enlevée et remplacée par un enroulement

d'environ 150 spires de gros fil émaillé d'un diamètre suffisant (1 à 2 mm) pour laisser passer le courant de la lampe pilote. Le transformateur sera monté derrière le réflecteur. La liaison se fera au moyen d'un cordon souple à trois conducteurs d'assez grosse section car lors de la décharge, il y circule un courant de pointe de plusieurs centaines d'ampères. La connection à l'alimentation se fait au moyen de fiches triphasées 15A.

Le modèle choisi sera incompatible avec celui utilisé sur le réseau. par mesure de sécurité. Le condensateur C_1 est constitué de quinze condensateurs de $2 \times 50 \, \mu\text{F}$ 450 V service, montès en parallèle. Une façon rapide de monter ces condensateurs est indiquée (voir photo 3).

Utiliser des condensateurs à fixation par pattes; avec ces condensateurs sont fournies des brides de fixation. Monter ces brides à l'opposé des contacts et souder les pattes des brides sur une plaquette vierge de circuit imprimé. Tous les pôles positifs sont ensuite reliés ensemble au moyen de gros fil étamé. Quant à l'origine de ces condensateurs, il faut se méfier du type « fond de grenier » qui à cause de leur courant de fuite

Néanmoins, un bon condensateur qui a été stocké pendant longtemps doit être un peu reformé en le chargeant et le déchargeant sous une tension croissante. La prise pour contact de flash est une prise réseau type américain pour laquelle on trouve des cables synchro tout faits (Rollei).

élevé ont un temps de charge...

infini.

Le transformateur d'alimentation provient d'une récupération d'un vieux poste de radio. Il est évidemment rare de trouver deux enroulements H.T. sur un même transformateur. Le problème peut être facilement résolu en utilisant un second transformateur dont le primaire sera sous volté pour obtenir la tension convenable au secondaire. Les interrupteurs I_1 et I_2 peuvent être commandés par le bouton actionnant un contacteur à trois positions. Il faut évidemment un contacteur aux contacts bien francs et bien isolés et rejeter les modèles à galettes de pertinax ou similaires.

Pour des raisons de facilité, toutes les diodes ont été choisies d'un même type très courant. Elles peuvent évidemment être remplacées par d'autres suivant les disponibilités.

Un tel flash peut encore être agrémenté d'un appareil de mesure qui indiquera l'état de charge de C_1 .

Nº 1392 - Page 175

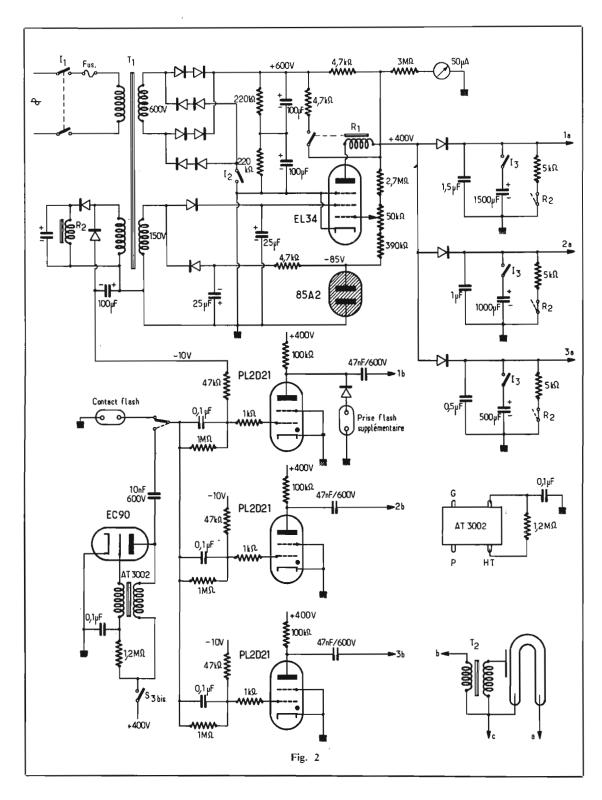


Fig. 2. — Le point C de T2, est le retour de masse du projecteur. Trots conducteurs y aboutissent : le fil « a » connecte le condensateur réservoir, le fil « b » l'impulsion de déclenchement et « c » est la masse.

En série avec un microampèremètre de $50~\mu A$ de déviation totale on branchera une résistance de $3~M\Omega$ afin d'avoir une déviation au deux tiers de l'échelle pour la charge compage 176 — N° 1392

plète. Un point de couleur sur le cadran repérera le maximum de charge.

FLASH MULTIPLE

Le passage du schéma d'un flash simple à un flash multiple se fait simplement en triplant le circuit du PL2D21. Il est inutile d'essayer de mettre directement en parallèle les trois grilles des thyratrons; cela aboutirait à des ratés d'allumage ou des allumages intempestifs. En

série avec chaque condensateur réservoir il faut intercaler une diode de façon à empêcher qu'il n'y ait des courants de l'un à l'autre pendant la decharge (Fig. 2).

Enfin, les condensateurs réservoirs seront choisis de valeurs différentes afin de disposer de flashes d'intensités différentes, par exemple : 1500 - 1000 et $500 \mu F$.

Enfin, il ne faut pas perdre de vue que trois thyratrons, un tube final plus l'un ou l'autre voyant consomment aux environs de 3 A sous 6,3 V.

LAMPES PILOTES

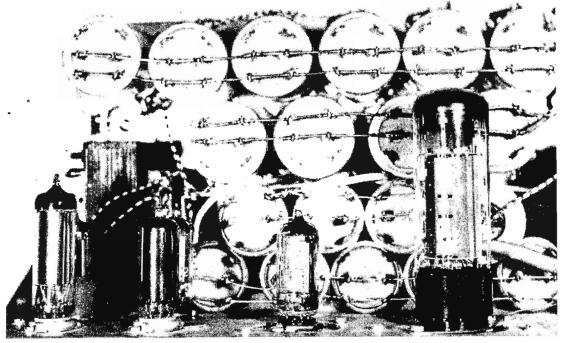
Les lampes pilotes sont du type halogène 12 V (à cause de leur taille et de leur rendement). Afin d'avoir un éclairage proportionnel à l'intensité des flashes les puissances sont des valeurs proportionnelles aux condensateurs réservoirs. Ces lampes peuvent se trouver chez les accessoiristes automobile (puissance de 50 W ou chez les vendeurs de lampes de projecteur dia (puissance de 100 W). Le schéma de montage est représenté figure 1A.

Si on ne dispose pas de support pour ces lampes, il ne faut pas essayer de souder sur les broches des ampoules : c'est risquer la vie des ampoules et de toute façon la soudure fondrait durant l'utilisation. La lampe pilote doit évidemment être montée le plus près possible du tube à décharge.

Enfin, il ne faut pas perdre de vue que pour alimenter trois lampes halogènes, il faut un solide transformateur et que tous les fils, contacts, interrupteurs, relais (en cas de commande à distance) bref tout le circuit doit présenter la résistance ohmique la plus faible possible.

L'ECLAIRAGE STROBOSCOPIQUE

Ce système d'éclairage fait évidemment double emploi avec les lampes pilotes.


Ces avantages par rapport à ces dernières sont : moindre consommation et éclairage plus exact en position et intensité par rapport aux lampes pilotes. Les désavantages sont les suivants : il est assez pénible à supporter par le- sujet photographié, et l'usure des tubes à décharge est plus rapide.

Pour travailler en stroboscopique, les condensateurs réservoirs sont remplacés par d'autres de valeur mille fois plus petite et proportionnelle. Les impulsions de déclenchement sont fournies par un oscillateur blocking fonctionnant à environ une vingtaine de hertz.

Le transformateur blocking provient d'un oscillateur trame d'un vieux téléviseur (transformateur Philips AT3002).

PRISE POUR FLASH SUPPLEMENTAIRE

Le déclenchement d'un petit flash portatif se fait à partir de la plaque d'un des thyratrons à travers une diode. C'est l'impulsion négative de décharge qui déclenche le flash extérieur. Celui-ci ne fonctionne évidemment pas en stroboscopique.

3.

ACCELERATION DE LA CHARGE

Quand les condensateurs reservoirs sont déchargés, le tube EL34 ne conduit pas, le relais Rel n'est pas excité et la valeur de R, est diminuée de moitié par la mise en parallèle d'une deuxième résistance. La charge des condensateurs se fait ainsi

plus rapidement et l'intervalle de temps entre deux prises de vue peut être raccourci. L'excitation du relais Rel enclenche également un voyant indiquant que le flash est prêt.

RELAIS DE SECURITE

Il est prudent lors de la coupure de l'appareil de décharger au plus tôt les condensateurs réservoirs. Par le relais R₂ ceux-ci sont normalement shuntés par des résistances bobinées qui sont mises hors circuit dès l'allumage de l'appareil.

Le rôle du relais R₂ est le suivant : quant on éteint l'appareil, les condensateurs réservoirs restant chargés, il serait très dangereux même après un certain temps de toucher aux fils « a » du projecteur (en montage « amateur » les normes d'isolement ne sont pas toujours respectées).

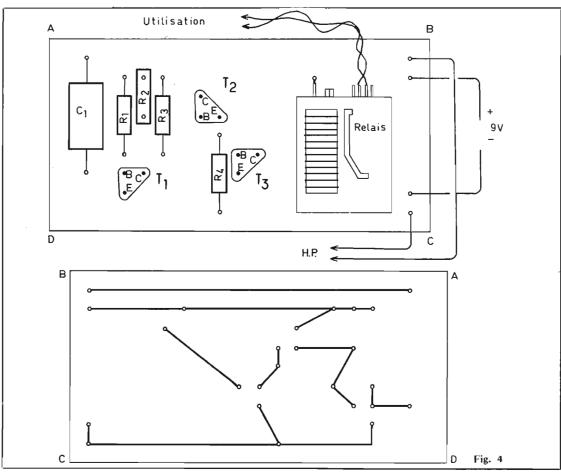
Pour cette raison, des l'extinction de l'appareil, les condensateurs sont shuntés par des résistances qui les déchargent. Lesquelles résistances doivent évidemment être déconnectées lors de l'allumage.

Le relais \overline{R}_2 pourrait être supprimé et remplacé par un triple interrupteur couplé à l'interrupteur réseau I_1 .

Quant au relais R₁, il permet d'accélèrer la charge des condensateurs réservoirs en réduisant de moitié la résistance série de 4,7 k\Omega. La valeur de cette résistance est un compromis : elle peut être très faible afin que la charge soit rapide. Mais une fois les condensateurs chargés, à part le courant de fuite des condensateurs, c'est le tube régulateur parallèle EL34 qui « encaisse » ce courant.

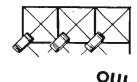
Le relais R_1 et la résistance de 4,7 $k\Omega$ en série avec le contact peuvent être parfaitement supprimés : le courant de charge sera simplement doublé. Dans l'appareil réalisé, le relais R_1 enclenche un voyant qui indique ainsi que les condensateurs réservoirs sont chargés.

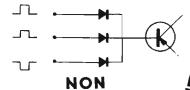
C. GODIN.

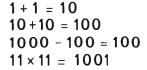

RELAIS ACOUSTIQUE SIMPLE

(Suite de la page 173)


Pour la réalisation de ce relais acoustique, on peut utilement s'inspirer de l'implantation des éléments donnée figure 3. Tous les composants sont alors montés « à plat ». Le relais est directement collé sur la plaquette, les électrodes de raccordement assurant encore une fixation suffisante. En ce qui concerne les contacts repos, travail et commun du relais, il convient de vérifier exactement l'emplacement de ces cosses de sortie à l'aide de l'ampoule et une pile de lampe de poche.


Il ne reste plus qu'à assurer les différentes liaisons entre les composants comme l'indique la figure 4 avec du fil de cuivre nu ou bien l'excédent des connexions de sortie des composants.


La mise au point s'avere pratiquement inexistante puisqu'elle consiste à ajuster R₂ jusqu'à ce que le relais colle ce qui provoquera l'extinction de L₁ conformement au schéma de principe, puisque la lampe est montée dans les contacts repos du relais. Il suffit alors de s'assurer qu'en parlant à proximité du hautparleur, la lampe s'illumine.



Nº 1392 - Page 177

INFORMATION ET INFORMATIQUE

(Suite voir nº 1388)

LE C.A. I

INSTRUCTION programmée peut se définir comme une technique d'enseignement basée sur la psychologie expérimentale; elle vise à une efficacité accrue grâce à une analyse plus scientifique des processus d'apprentissage.

Comme l'a souligné récem ment l'Institut européen pour la formation professionnelle, dans le cadre d'une étude confiée par la Commission des Communau tés européennes, l'instruction programmée se londe sur des textes d'une structure différente de celle des cours classiques. Leur préparation est l'œuvre d'un travail d'équipe, et nécessite des tests sur des groupes représen tatifs des couches de population que l'on désire initier ou perfectionner.

Avant de rédiger un cours, il convient d'en fixer, au préalable, les objectifs, de déterminer les exercices ou les actions que tout élève, ayant étudié le cours, doit être capable d'exécuter sans défaillance. Il faut ensuite établir des tests d'entrée, qui tendent à dégager les éléments capables de suivre le cours avec fruit, et des tests de sortie qui donneront une idée précise de la manière dont les élèves ont assimilé le cours.

Parallèlement, l'équipe doit procèder à une sélection des idées, des thèmes, des mots, devant être expliqués pour permettre aux élèves de progresser; elle doit aussi établir l'ordre dans lequel les diverses notions auront à être exposées.

Alors commence la redaction du cours proprement dit. Celuici se compose d'une série de séquences, dont la structure se compose d'un élément d'information suivi d'une question.

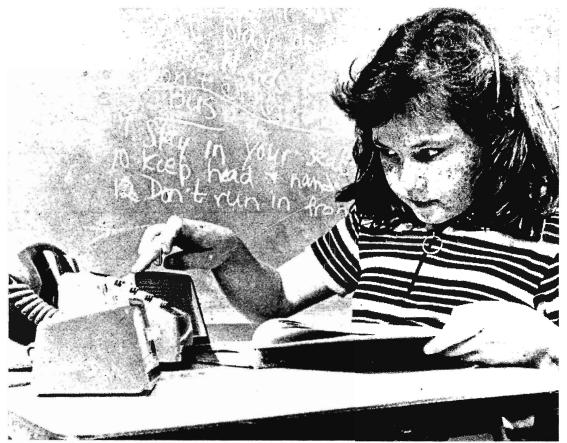
C'est le professeur Skinner, de l'université de Harward, qui passe pour avoir été le créateur de l'instruction programmée, vers Page 178 – N° 1392 1950. Les avantages de l'instruction programmée sont multiples :

• l'intruction programmée permet de réduire le temps d'étude et de réaliser des performances meilleures que celles enregistrées

par l'enseignement traditionnel; • chaque élève peut travailler à son rythme propre, et sans professeur, ce qui ouvre des perspectives nouvelles aux pays en voie de développement où le personnel est rare, et aux adultes désireux de se perfectionner.

LE LIVRE ET L'ORDINATEUR

Les cours, en instruction programmée, peuvent être présentés


sous des formes différentes. La plus connue est le livre, mais celui-ci a une présentation très différente du manuel classique. Le livre est dit « simple » quand le texte, établi suivant la méthode propre à l'instruction programmée, suit le fil de la pensée; il est dit « brouillé » lorsque les réponses ne font pas suite aux questions, mais en sont séparées. afin d'obliger les élèves à un effort personnel.

Outre les machines à apprendre (le cours, sur film, est projeté sur un écran), l'ordinateur s'avère très utile à l'instruction programmée. S'il est utilisé avec

discernement, il est capable d'informer l'élève et de corriger ses erreurs.

Aux Etats-Unis, l'instruction programmée par ordinateur s'insère dans une discipline appelée « computed-assisted instruction : (enseignement assisté par ordinateur), ou C.A.I.

A Stanford, différents cours sont envoyés à des écoles et uni versités par un centre d'ordinateurs. Les disciplines abordées sont : pour les étudiants, le russe et la programmation ; pour les élèves des écoles primaires : la logique mathématique élémentaire, la lecture, l'orthographe, le

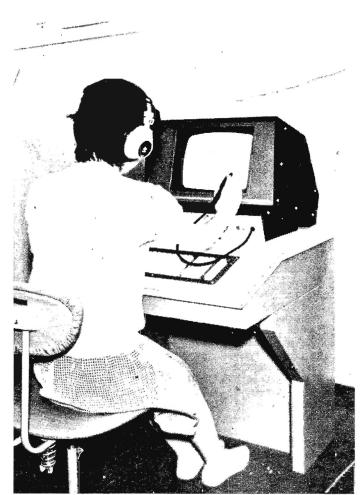
(a) Johnny apprend a lire.

vocabulaire. Des milliers de jeunes, résidant dans huit Etats (Californie, Illinois, Kentucky, Mississipi, Iowa, Ohio, Tennessee et Washington), travaillent de cette manière. Il existe aussi un programme de rééducation des sourds-muets.

Des télescripteurs sont installés dans les classes, où les élèves viennent travailler par groupes, pendant une dizaine de minutes, afin de ne pas rompre le rythme de la classe traditionnelle. L'élève tape son nom, sur le clavier et son numero de code : son programme personnel commence; il est tantôt frappé à la machine à écrire, tantôt diffusé par les écouteurs. Questions, réponses, exécutions d'ordres. Si la réponse est fausse, l'enfant entend « essayez encore une fois », et il peut se corriger. Après trois essais, la réponse correcte est donnée. A la fin de la leçon, un bilan est établi, dont le maître peut disposer immédiatement.

Dans une autre optique, l'expérience des professeurs Minsky, Winston et Seymour Papert, àu Massachusetts Institute of Technology (M.I.T.) propose une solution originale au problème fondamental, pour l'enseignant : « Comment apprendre à l'élève à apprendre, sans le diriger arbitrairement? » Le laboratoire d'« intelligence artificielle » du M.I.T. est à l'origine du projet réalisé en collaboration avec un établissement primaire proche de Boston (la « Bridge School » de Lexington) : on enseigne aux écoliers de cet établissement un langage technique extrêmement

simple, le Logo, grâce auquel, ils peuvent programmer des instructions exécutées par une sorte de « tortue » cybernétique ; il s'agit d'une boule munie de palpeurs et de stylets qui dessinent à même le sol, la figure programmée. Pour Seymour Papert, le jeune Américain, qui assimile mal les mathématiques, pourrait en acquérir une bonne connaissance si l'on crée un environnement mathématique (« a Mathland » - ou le pays des mathématiques) autour des enfants. Il s'agit là de supprimer ce que la classe traditionnelle peut avoir de passif et d'artificiel, en donnant aux enfants la possibilité d'agir par eux-mêmes.


Les «tortues» Logo sont contrôlées par un ordinateur, qui, à son tour, est commandé par le jeune utilisateur. Ainsi l'enfant, installé devant la console tape: «Forward 100», «Left 90» ou «Pendown», pour faire avancer la tortue-robot, la faire pivoter ou lui donner l'ordre de poser le stylet sur le papier de dessin.

L'ORDINATEUR POUR L'ENSEIGNEMENT DE LA MEDECINE

En 1966, la chaire de clinique des maladies du sang, à la Faculté de médecine de Paris, décida d'examiner de quelle façon et dans quelles limites elle pourrait confier à un ordinateur, muni de plusieurs consoles, la tâche de prodiguer à des étudiants le certificat de spécialité dont elle a la charge. Cette recherche était financée en grande partie par la D.G.R.S.T. (Délégation générale

(b) ... A Moscou, des élèves s'initient à la programmation...

(c) ... Comme a l'okyo...

à la recherche scientifique et technique), complétant l'apport propre de la Faculté de médecine et de diverses sociétés : l'I.R.J.A. et la S.E.M.A. pour ce qui est des études théoriques et du saftware, la C.I.I. pour le calculateur, et la S.P.E.R.A.C. pour les terminaux.

Les raisons qui ont conduit au choix de l'hématologie pour servir de cadre à ces recherches sont multiples. Il y a d'abord le fait qu'il s'agit d'un enseignement médical dont les caractéristiques sont différentes d'un enseignement scientifique ou d'un enseignement littéraire. D'une part, un enseignement scientifique comme celui des mathématiques s'appuie sur un domaine très structuré, pour lequel les liens logiques sont fa ciles à mettre en évidence; d'un autre côté, le domaine littéraire se prête mal a un contrôle des résultats obtenus à cause de l'imprécision plus grande des tests de connaissance que l'on peut mettre au point. Dans l'enseignement de l'hématologie, l'introduction du calculateur offre la possibilité de créer de nouveaux outils, permettant de mettre en place des programmes d'enseignement efficaces; l'acquisition d'une grande experience du maniement de ces outils peut

conduire a envisager d'autres expériences, orientées vers des domaines tels que l'enseignement des langues ou de la psychologie.

L'INFORMATIQUE POUR LES CLASSES DU SECOND DEGRE

Un séminaire international, regroupant les représentants de vingt pays membres de l'O.C.D.E. s'est tenu, courant 1970, pour définir les grands axes d'un enseignement de l'informatique. Les réflexions de ces spécialistes ont porté sur le pourquoi, et le comment d'un tel enseignement, à la lumière d'expériences déjà réalisées dans de nombreux pays.

Dans l'un des rapports de ce séminaire, J.-C. Boussard et J. Kuntemann, de la Faculté des sciences de Grenoble, affirment qu'il est hors de doute que l'infor matique sera, dans dix ou vingt ans, un constituant de notre société aussi important que l'automobile ou le téléphone. L'enseignement doit tenir compte de cette constatation, et si possible rapidement, en raison des délais nécessaires pour un évolution profonde des mentalités.

L'éveil à l'informatique doit, par conséquent, se faire des le premier degré : la carte perforée pour les relevés de consomma-

tion d'électricité, le réapprovisionnement d'un commerçant en chaussures, le recensement de la population, sont des suiets de leçons d'éveil à l'informatique. Au niveau de l'enseignement du second degré, cet enseignement peut se poursuivre, à propos de l'éducation civique par exemple (place de l'informatique dans la société); il semble en outre que rien ne s'oppose en principe à ce qu'un enseignement intitulé « informatique » soit institué dès le second degré : une expérience, qui date de 1968, « eu pour thème l'initiation à l'emploi de l'ordinateur, par l'intermédiaire d'un langage algorithmique (en l'occurrence l'Algol 60); cette initiation était destinée à 120 lycéens (classe de troisième et seconde). Chaque séance d'initiation était consacrée à l'introduction d'une notion simple de programmation, illustrée par un exercice pratique à rédiger à deux, et ne dépassant jamais dix lignes symboliques. Chacun des programmes est perforé et passé en machine; les résultats sont commentés à la séance suivante.

Les moyens nécessaires à une telle activité sont très faibles : une estimation raisonnable conduit à un coût moyen d'heure de présence, par élève, d'environ 3 francs.

L'extension à grande échelle de l'enseignement de l'informatique dans le second degré peut être conçue de deux manières :

- Chaque lycée se dote d'un petit ordinateur,
- Des centres d'informatique se créent dans des villes universitaires, et chaque établissement d'enseignement secondaire se trouve relié par téléphone à ces centres, en time-sharing.

Pour rentabiliser l'ordinateur, on peut envisager de louer des heures d'ordinateur aux industriels, hors des périodes de cours (durant les congés, les nuits,...).

Selon les estimations de J.-C. Boussard, la formation de 100 000 élèves par an conduirait à un coût annuel de 75 millions de francs.

LE HARDWARE

Selon l'Américan Institute for Research, près de 35 % de grande écoles américaines seront pourvues d'un ordinateur pour l'enseignement; déjà, Outre-Atlantique, plus de 50 % des grandes écoles U.S. ont accès à un ordinateur, pour des travaux administratifs. Le C.A.I., aux Etats-Unis, devient réalité: dans le quartier de Watts, près de Los Angeles, des enfants ont, par exemple, travaillé sur 6 miniordinateurs 2000 C, de Hewlett-Page 180 - N° 1392

(d) ... à Eton, et dans bien d'autres villes universitaires. L'ordinateur devient un aide à l'enseignement

Packard, connectés à 32 terminaux; à Boston, des enfants étudient à l'aide d'un système de time-sharing, comprenant un calculateur PDP-8 de Digital Equipment, relié à 13 terminaux; à Palo Alto, 60 jeunes sourds utilisent en time-sharing un ordinateur CDC 7000, relié à des terminaux Friden.

Les divers systèmes disponibles pour l'enseignement sont indiqués ci-après :

- Edusystem 10 et 20 est construit autour d'un miniordinateur PDP-8E, par Digital Equipment Corp. Le modèle 10 contient un terminal et une unité centrale à mémoire de 4 096 mots : il est loué aux U.S.A. au taux mensuel de 250 à 350 dollars par mois.
- L'édu System 80 emploie un PDP-11 avec une mémoire centrale à tores, de 24 576 mots, et une mémoire auxiliaire rapide à disques de 262 kilomots; il est pourvu d'une imprimante en ligne, d'une unité à bandes perforées, et d'un processeur permettant à 16 terminaux de fonctionner en time-sharing; le langage adopté est le Basic; le coût de location atteint 1 500 dollars par mois, aux Etats-Unis.

- Le système 3000 de Hewlett-Packard est susceptible de travailler en divers langages (Fortran, Basic,...); il peut être relie, en time-sharing, à 64 terminaux. La mémoire à tores est extensible de 32 à 128 kilobits. Le coût du 3000 peut atteindre 500 000 dollars, ou 4 200 dollars en location mensuelle.
- Data Général Corp. propose cinq systèmes d'informatique pour le marche de l'enseignement; leur coût mensuel de location s'échelonne entre 8 500 et 50 975 dollars. Tous sont conçus autour du langage Basic; jusqu'à 16 personnes peuvent travailler simultanement. Le plus simple de ces systèmes s'appelle : Seminar 1, il contient un miniordinateur Nova 1220 avec une mémoire à tores de 8 kilomots; Seminar 5 est le plus complexe, réalisé à partir d'un mini-ordinateur Nova 800 (mémoire de 24 kilomots).
- Univac Corp. dispose d'un réseau de C.A.I., installé à Chicago. Un processeur central, avec mémoire à tores de 9 800 mots, est on-line avec 14 écoles, chacune d'elles disposant de 15 terminaux Uniscope, à tube cathodique.

Le marché potentiel des calculateurs d'enseignement apparaît très étendu ; de nombreux constructeurs se lancent à la conquête de ce marché : Computer Design Corp., par exemple, vient d'annoncer un « Tutor Computer », calculateur préprogrammé destiné à l'enseignement de l'arithmétique; son prix est très bas : 1 175 dollars. Hewlett-Packard propose ses deux modèles 9810 et 9820 dans les écoles secondaires; enfin, Wang offre son nouveau modèle bon marché – le 400 – pour l'enseignement.

Il convient encore de citer deux approches expérimentales au C.A.I. intégral, financées par le National Science Foundation:

- Ticcit (time-shared interactive, computer controlled information television) développé par la Mitre Corp.: 128 récepteurs de télévision en couleur seront connectés à deux mini-ordinateurs Nova 800.
- Plato, qui, grâce à un gros ordinateur, CDC 6400, servira jusqu'à 400 terminaux simultanément, dans une région de 1 300 km de rayon.

Marc FERRETTI.

(Clichés Bell Telephone Labs., Unesco/A. Garanine, Hitachi, Marconi.)

UN TÉLÉVISEUR NOIR ET BLANC A TUBE DE 61 cm

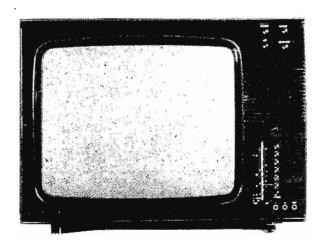
CARACTERISTIQUES GENERALES

- Alimentation secteur 110/ 220 V 60 Hz.
- Consommation 160 VA. - Equipement: 6 tubes,
- 13 transistors, 10 diodes.

 Tuner UHF VHF intégré
- à sélection par touches.
- H.P. dimensions : 130 \times 80 mm.
- Puissance sortie son 2,5 W.
- Impédance de l'antenne 75 Ω.
- Tube de 61 cm autoprotégé.
- Dimensions : 700×525 × 360 mm.

Ce téléviseur est présenté dans une ébénisterie en bois asymétrique, les commandes sont situées à droite de l'écran.

En haut, au-dessus du hautparleur et à gauche est situé le potentiomètre de volume sonore, au-dessous l'interrupteur secteur, à droite le potentiomètre de commande de luminosité et en dessous le potentiomètre de réglage du contraste.


La sélection et le préréglage des canaux des chaînes UHF et VHF est obtenu par le clavier à sept touches situé sous le haut-parleur.

Le commutateur de changement de tension et les prises antennes sont situées sur le panneau arrière.

ETUDE DU SCHEMA

Le tuner VHF UHF intégré est équipé de trois transistors qui remplissent les fonctions suivantes T₁ amplificateur RF. En VHF T₂ est utilisé en transistor oscillateur et T3 en mélangeur en UHF T₂ est utilise en convertisseur et T₃ en ampli ficateur FI.

A la sortie du tuner les signaux sont envoyés au filtre d'entrée FI puis au premier transformateur FI où va s'opérer la séparation des signaux vision des signaux son. Ces derniers sont appliqués à travers le condensateur C1 sur la base de T4, premier amplificateur MF son, le transistor utilisé est de type BF167. Le signal est ensuite

envoyé à travers un condensateur de 22 pF sur la base du deuxième transistor amplifica-teur MF BF173. Le signal est ensuite détecté par la diode SFD104 et envoyé sur la base du transistor T₆ BC157B. Le reglage du CAG se fait par l'intermédiaire du potentiomêtre

Du collecteur du transistor T₆, le signal est envoyé à travers le condensateur C₁₆ de 47 nF au potentiomètre de volume son.

puis sur la grille de la partie triode du tube PCL86 monté en préamplificateur. Le signal va ensuite attaquer la grille de la partie pentode et ira exciter le bobinage du H.P. à travers le transformateur de sortie son TR₁.

L'AMPLIFICATEUR FI

Le signal FI vision est envoyé sur la base du transistor T₇ BF167. Du collecteur de ce transistor le signal résultant ira atta quer le second transistor à tra-

FI vision, mais sur l'émetteur de T, une fraction du signal sera envoyee sur la base de T₁₂ BC148B qui est montée en amplificateur de CAG. Le deuxième transistor FI est

vers le premier transformateur

du type BF173 et le troisième du type BF232. On trouve ensuite le circuit de détection avec la diode D₂ de type SFD104. Viennent ensuite les circuits de correction vidéo sur la base du transistor T₁₀ BC172B, préam-plificateur vidéo. Dans le cir-cuit émetteur de ce transistor est situé le potentiomètre de commande du contraste. Alors que dans le circuit de collecteur la tension aux bornes de la résistance R₄₁ commandera le transistor T₁₃ BC157B amplificateur de CAG vidéo.

L'amplification vidéo est assurée par le transistor BF258. Le signal vidéo ainsi obtenu sera appliqué directement sur la cathode du tube image.

SEPARATEUR ET TRI

Les signaux de synchronisation sont envoyés sur la grille de l'élément heptode de la ECH84 à noter la résistance de 1 MQ dans le circuit plaque de ce tube et le pont de résistance 47 kΩ-4.7 kû dans le circuit écran. Les tops sont ensuite envoyés sur la grille de la partie triode où va s'operer le tri.

BASE DE TEMPS IMAGE

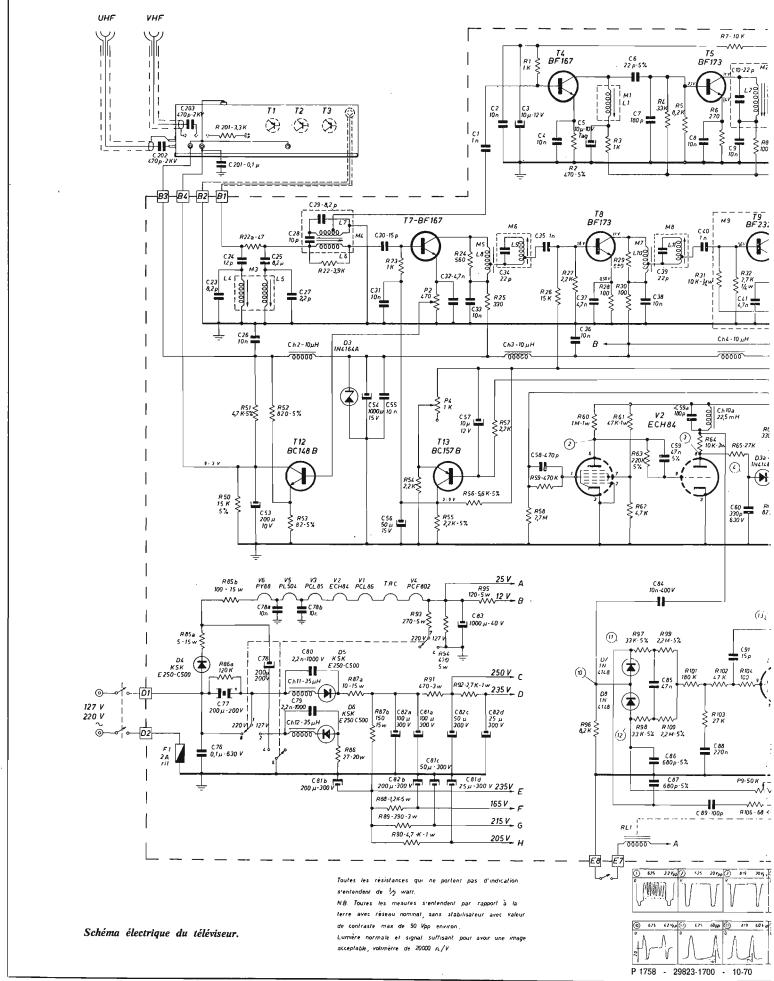
La mise en forme des signaux image est assurée par la diode D_{3a} et les circuits résistances et condensateurs qui la suivent. Les tops sont envoyés sur la grille de la partie triode du tube PCL85. Le multivibrateur est constitué par les deux éléments triode et pentode du tube PCL85 couplés. Le potentiomètre P, règle l'amplitude verticale, P₆ et P₈ la linéarité verticale, P₅ réglera la fréquence verticale.

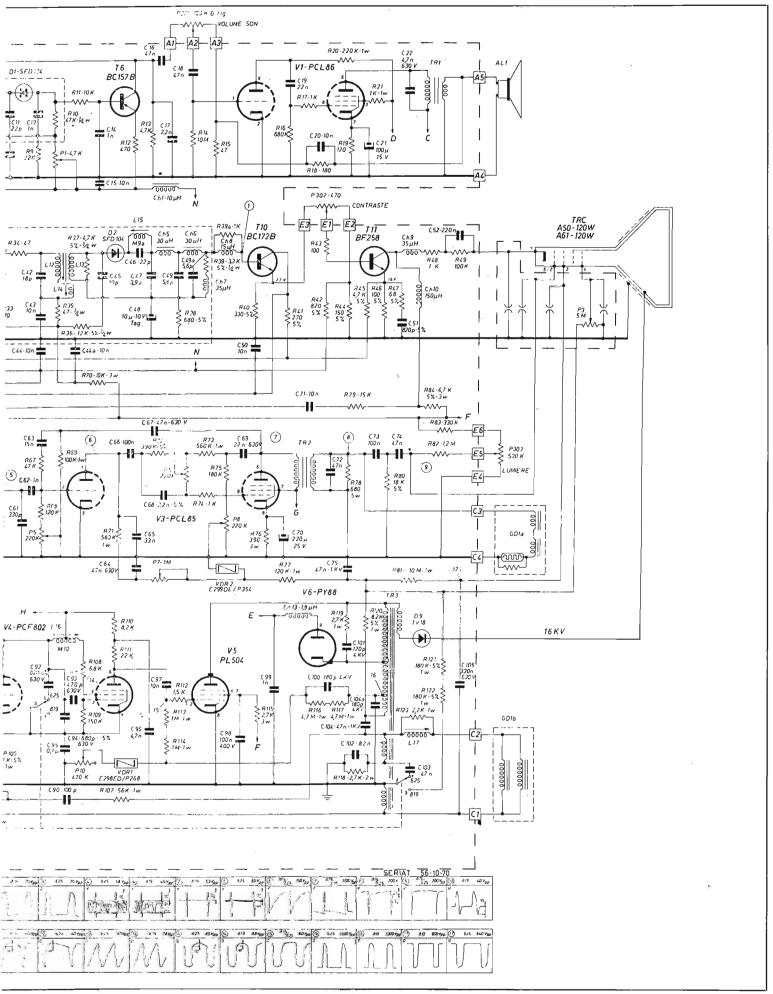
BASE DE TEMPS LIGNE

Le comparateur est équipé des deux diodes D, et D, La fonction multivibrateur est assurée par les deux éléments de la PCF802. La commutation 819/ 625 lignes s'effectue à l'aide du relais RL₁. Le tube final est équipé d'un tube PL500.

VENTE PROMOTIONNELLE DE TÉLÉVISEURS

- * IMPORTATION DIRECTE
- * GARANTIE TOTALE UN AN
- MODÈLE DE SALON ~ tube de b1 cm autoprotégé 6 programmes de réception en 819/625 lignes. Longue distance - Présélection par touches. Ensemble VHF et UHF intégré - Entièrement transistorisé. Dimensions: 700 x 525 x 360 mm
- TYPE NM : Ebénisterie facon nover mat
- .680 F TYPE NV : Ebénisterie
 - 780 F


• TYPE M.P. - Portable 51 cm Poignée escamotable - Prise pour antenne autonome 740 F


EN VENTE :

COMPTOIR RADIO - ÉLECTRIQUE COMPTOIR ÉLECTRO-MONTREUIL 243. RUE LA FAYETTE - PARIS-X* Tél : 607.57.98 - 607.47.88

118, RUE DE PARIS - 93100 MONTREUIL Tél : 287.75.41

Nº 1392 - Page 181

Commutateurs, contacteurs et programmateurs oour usages multiples

ANS le domaine industriel ou ménager, le problème des commandes électriques des différents appareils ou machines est très important.

La complexité des commutations et la place toujours réduite imposent la création de commutateurs contacteurs et programmateurs simples et robustes ayant des possibilités de couplages multiples. Il peut s'avérer très intéressant au niveau de l'amateur de faire l'acquisition de certains de ces dispositifs de commandes électriques, leur domaine d'utilisation ouvrant un vaste champ d'applications. C'est ainsi que les établissements « Cirque Radio 2 » se proposent d'offrir aux amateurs à des prix étudiés toute une série de ces dispositifs jusqu'alors réservés aux domaines professionnels et industriels. Nous allons, en conséquence, vous présenter quelques uns de ces dispositifs en vous precisant les caractéristiques essentielles associées aux détails des diverses commutations mises en

A l'appui de ces données, l'amateur ne manquera certainement pas de trouver le dispositif qui lui convient.

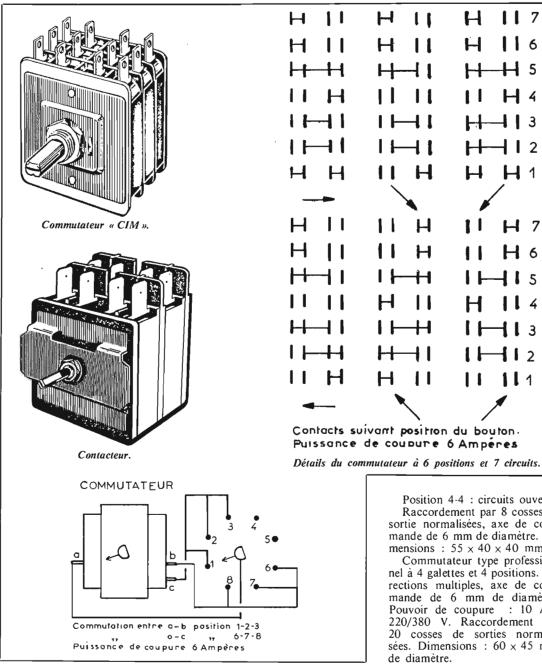
COMMUTATEURS

Parmi les divers types de commutateurs, le système à galettes reste le plus riche en possibilités. Le commutateur CIM type 1400 (constructions industrielles et mécaniques) est un dispositif dont chaque galette comporte deux contacts unipolaires commandés chacun par une came pouvant être de profil ou de position différente.

Chaque galette comporte son mécanisme de positionnement.

Les cames de contact sont en bronze au béryllium sans shunt ni articulation. Par ailleurs, un ajour régulateur de flexibilité réduit la fatigue du métal et assure une très grande longévité à cet appareil.

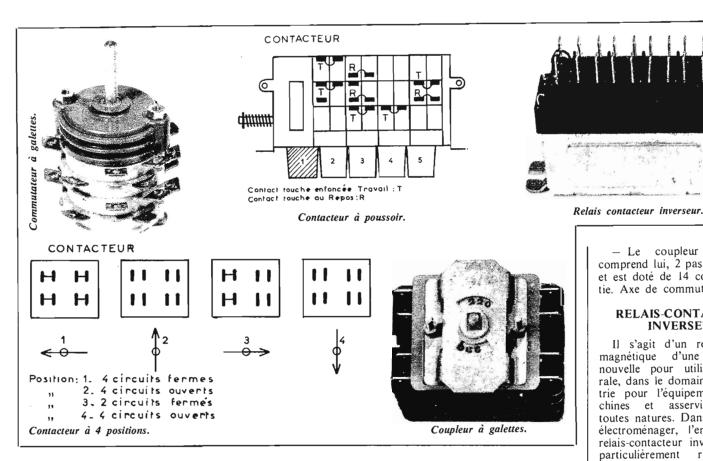
Page 186 - Nº 1392


Les contacts sont en argent bimétal permettant un excellent pouvoir de coupure, 10/15 A, 220 et 380 V. Le raccordement s'effectue sur des cosses 5 mm SGE 6,35 AMP à vis, capacité

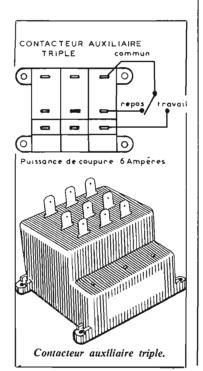
Commutateurs CIM type professionnel. 6 positions et 7 circuits. 28 prises diverses sur cosses normalisées. Axe de commutation, pouvoir de coupure 6 A. Schema des divers contacts établis, en sonction de la position de l'axe de commande. Dimensions: $110 \times 55 \times 45$ mm. Contacteur professionnel CIM

à 4 positions:

Position 1-4: circuits fermés. Position 2-4: circuits ouverts. Position 3-4: circuits fermés.


117

Position 4-4: circuits ouverts. Raccordement par 8 cosses de sortie normalisées, axe de commande de 6 mm de diamètre. Dimensions : $55 \times 40 \times 40$ mm.


111

Commutateur type professionnel à 4 galettes et 4 positions. Directions multiples, axe de commande de 6 mm de diamètre. Pouvoir de coupure : 10 A - 220/380 V. Raccordement par 20 cosses de sorties normalisées. Dimensions: 60 x 45 mm de diamètre.

Contacteur auxiliaire triple, 2 positions: I position travail, 1 position repos. 3 circuits. Fixation par 4 trous. Pouvoir de coupure 6 A. Raccordement par 9 cosses de sortie. Dimensions : $70 \times 45 \times 45$ mm.

Interrupteur à bascule avec retour automatique. Position de circuit fermé avec levier baissé. Très important pouvoir de coupure. Dimensions très réduites : $35 \times 25 \times 10$ mm.

Contacteur à poussoir avec dispositif de déclenchement manuel ou à distance (possibilité de déclenchement par système thermique ou électromagnétique). Particulièrement recommandé pour l'asservissement et la commande de machines-outils. Commande possible de I à 5 blocs. Pouvoir de coupure par bloc 4 kW - 220/380 V. Chaque bloc comporte 3 contacts inverseurs à double coupure.

Ensemble mécanique en acier cadmié. Lames mobiles bas-Contacts « argent ». culantes. Nombre de touches : 5, 1 rappel et 4 fonctionnement. Mécanisme à enclenchement et déclenchement mutuels et verrouillage. Dimensions $150 \times 90 \times$ 50 mm.

COUPLEUR A GALETTES

En complement aux commutateurs à galettes, ont été étudiés des appareils dérivés de ces derniers permettant de réaliser des couplages électriques simples ou complexes.

Le coupleur proposé offre la possibilité d'assurer la commutation d'appareils ou de moteurs tout en restant d'un encombrement réduit.

A titre d'exemple, il est possible de réaliser le changement des couplages 220 ou 110 V de l'ensemble des moteurs ou de l'appareillage d'une machine, et ceci à l'aide de 5 galettes, l'appareil ayant une longueur d'environ 50 mm.

La manœuvre de cet appareil peut être assurée par un dispositif amovible tel qu'une clé carrée par exemple. Des ouvertures dans la plaque frontale permettent de lire la tension désirée.

Les raccordements peuvent être effectués par fiches, type SGE 5 mm ou AMP/6,35. Capacité de raccordement 3 mm². Cet appareil est prèvu pour une inappareil de 6 A - 220/380 V; il importe toutefois que les manœuvres soient effectuées à vide.

L'état des divers contacts est schématisé par le croquis cidessous.

- Le coupleur de gauche comporte 2 pas et 4 circuits et est équipé de 26 cosses de sortie. Axe de commutation. Dimensions: $70 \times 65 \times 45$ mm.

- Le coupleur de droite comprend lui, 2 pas et 8 circuits et est doté de 14 cosses de sortie. Axe de commutation.

RELAIS-CONTACTEUR INVERSEUR

Il s'agit d'un relais electro magnétique d'une conceptior nouvelle pour utilisation gené rale, dans le domaine de l'indus trie pour l'équipement de machines et asservissement de toutes natures. Dans le domaine électroménager, l'emploi de ce relais-contacteur inverseur, reste particulièrement recommandé pour l'automatisation des machines, la commande automatique de radiateurs.

Ce dispositif de faible encombrement permet de commu ter des puissances relativement élevées ou un nombre de circuits important.

Il comporte à cet effet 4 contacts inverseurs à double coupure et équipés de lames mobiles basculantes dont la masse en mouvement est très faible. Les contacts proprement dits sont en argent.

Le circuit magnétique est incorporé dans un carter métallique pour une meilleure dissipation de chaleur. Il est pourvu d'une palette mobile entraînant la navette de commande des lames mobiles.

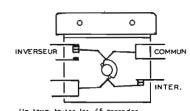
644645		DOOLEE		GAL	GAUCHE		DROITE	
GA	GAUCHE DROITE		ļ E	Αl	Al IA	E l l E		
ĮΕ	IA	ALI	ΙE	ļ F	ы	B B	F i i F	
D	в	BI IB	D I I D	l G	сI	clic	G[[G	
	CI	CIIC		H11	110	D D	н[[н	
220 V				110∨				
		1						
ĮΕ	^1	I IA	ĮΕ	ļΕ	A1	AII	[[E	
D	в	11	 	 F	В	B] [F	
	01	cl I		 G	c	C	6	
380∨			ıllu	JID	DIJ	п 1н		
Contacts ou reunions entre les			.,,,,	22 OV				
leitres semblables.			Con	Contacts ou réunions ente les				
Ex.contacts entre B,B et B				lettres semblables.				
Puissance de coupure 6A.					Ex.contacts entre B.B et B			
Détails du circuit des coupleurs à galettes. Puissance de coupure 6 A								

circuit magnétique à double bobinage indépendant confère l'avantage d'être commutable pour 2 tensions courantes, afin d'éviter les changements de bobines.

CARACTERISTIQUES GENERALES

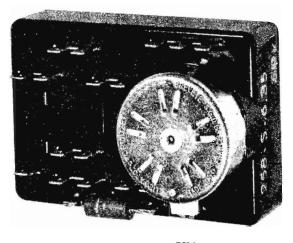
Tension d'excitation – C.A. : 24 à 380 V. C.C.: 24 à 220 V.

Puissance d'excitation: 12 VA. Nombre de contacts : 4 inverseurs à double conpure par pôle.

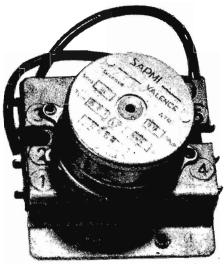

Nombre de manœuvres : 2 000 000 sous 4 kW.

Fréquence de manœuvres : 2 000 à l'heure maximum.

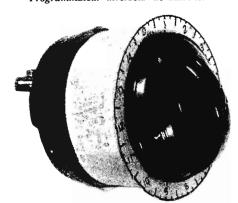
Raccordements: bornes AMP/6,35.


Dimensions: L 102 mm 1 28 mm - H 72 mm.

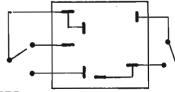
Poids: 265 g.



Un four foutes les 45 secondes 2 inversions of 2 coupures par tour. commandés par cames.


Programmateur inverseur du sens de la marche.

Programmateur « CIM ».



Programmateur inverseur de marche.

Temporisateur à horloge.

INVERSEUR et INTER TEMPORISES

Apres contact coupure apres 18 sec. environ. Coupure pendant 5 sec. environ. INVERSEUR Toutes les 22 sec .environ.

LES PROGRAMMATEURS

Il s'agit de dispositifs de commandes électriques qui permettent de mettre en fonctionnement ou de couper du réseau de distribution dans les limites d'un horaire déterminé par avance, divers appareils électriques.

Le plus souvent, ces dispositifs comportent un contact repos ou travail. Leur pouvoir de coupure est tel qu'il est possible par exemple d'allumer à une heure précise votre chauffage électrique ou bien simplement votre récepteur radio, afin d'enregistrer un radio concert durant votre absence.

D'autres programmateurs permettent d'obtenir à des intervalles de temps réguliers, une interruption et une inversion du sens de marche d'appareillage électronique.

Inverseur-interrupteur temporisé CIM monté dans un boîtier bakélite avec plaque de fixation. Entraînement du système de came par moteur synchrone 110-220 V. 7 prises de sortie donnant lieu à de multiples combinaisons. Fonctionnement : après contact, coupure au bout de 18 s environ puis arrêt durant 5 s. Inverseur toutes les 22 s environ. Dimensions : $90 \times 55 \times 45$ mm. Page 188 - Nº 1392

Programmateur CIM. Alimentation 110-220 V alternatif, entraînement par moteur ferrite synchrone Crouzet. Dispositif de cames établissant divers contacts sur les 16 prises de sortie. Plaque de fixation.

Appareil d'encombrement réduit destiné à réaliser l'inversion automatique suivant un cycle défini de moteur monophasé à phase auxiliaire ou triphasé de puissance fractionnaire (commandes de moteur de machines à laver). Boîtier moulé en bakélite ou mélamine. Possibilité d'alimentation en 220/380 V par résistance additionnelle.

Définition du cycle pour 1 tour

- Marche dans un sens pendant 24 s.
- Arrêt pendant 6 s.Marche en sens inverse pendant 24 s.

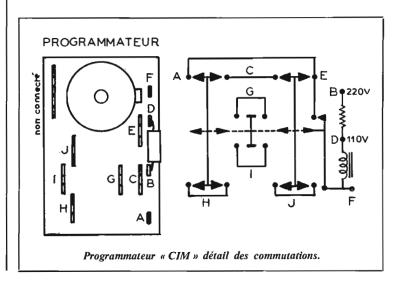
- Arrêt pendant 6 s.

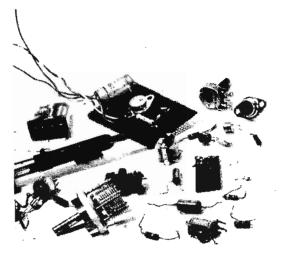
Pouvoir de coupure : 7 A 380 V ou 10 A 220 V.

Dimensions : $90 \times 55 \times$ 45 mm.

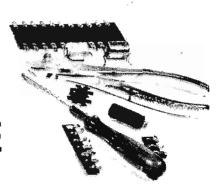
Programmateur (inverseur de sens de marche). Groupe motoréducteur équipé d'un moteur ferrite synchrone commutable 110/220 V (double bobinage) et 220/380 V par résistance additionnelle incorporée.

Eléments porte-contacts en bakélite ou mélamine. Définition du cycle pour 1 tour


en 45 s: - Marche dans un sens :


- - Arrêt 4,5 s.
- Marche en sens inverse : 18 s.
 - Arrêt : 4,5 s.
- Dimensions : $.70 \times 65 \times$ 50 mm.

Programmateur temporisateur. Dispositif à horloge mécanique. Contact repos et travail. Pouvoir de coupure : 15 A/250 V. Très grande marque anglaise. Fabrication professionnelle. Durée de la temporisation réglable par bouton flèche se déplaçant en regard d'un cadran gradué de 15 s en 15 s de temporisation. Temporisation maximale: 12 mn.


de caractéristiques Modèle mais temporisation identiques maximale: 15 mn.

Modèle identique aux precédents mais temporisation maximale de 360 mn, soit 6 h.

A-B-C DE L'ÉLECTRONIQUE

LA TRANSFORMATION DES SIGNAUX

A transformation de la forme d'un signal peut s'effectuer de nombreuses manières. En appliquant un signal non sinusoïdal à un circuit contenant des éléments L et C (un au moins) le signal de sortie de ce circuit sera déformé.

Un autre moyen de déformer un signal de forme donnée est de le faire passer par un circuit non linéaire. Ce genre de circuit est généralement un transistor ou un ensemble de transistors ainsi que tout autre semi-conducteur tel que la plupart des diodes normales et les diodes spéciales.

Comme modificateurs de la forme d'un signal, on mentionnera aussi les oscillateurs commandés tels que les multivibrateurs astables, monostables et bistables.

Dans le précédent ABC de l'électronique, on a étudié les circuits déformateurs RC, connus sous le nom de différentiateurs, et intégrateurs.

Il existe une infinité de combinaisons de ces deux sortes de circuits, entre eux et avec d'autres.

Voici maintenant une étude sur les multiplicateurs de fréquence réalisés avec divers dispositifs électroniques à semi-conducteurs.

MULTIPLICATEURS DE FREQUENCE

Il s'agit bien de transformateurs de signaux périodiques, tout comme dans le cas de diviseurs de fréquence.

On peut dire qu'un diviseur est un atténuateur de fréquence, tandis qu'un multiplicateur est un amplificateur de fréquence. La division et la multiplication de fréquence portent sur des nombres entiers, de 2 à l'infini.

En combinant un diviseur avec un multiplicateur de fréquence, il Page 208 - N° 1392 sera possible d'obtenir des rapports fractionnaires entre la frequence du signal d'entrée et celle du signal de sortie. Ainsi, soit un signal initial de fréquence f. Appliquons-le à un multiplicateur donnant à la sortie un signal à la fréquence $f_2 = n f_1$, n étant, comme on vient de le préciser, un nombre entier, par exemple 2, 3, 4... Appliquons ensuite le signal à la fréquence f, à un diviseur de fréquence. Il donnera à la sortie, un signal dont la fréquence sera $f_3 = f_2/m$, m étant encore un nombre entier.

Finalement, on aura $f_3 = f_1 n/m$ et selon les valeurs de n et m, leur rapport peut être fractionnaire, par exemple n/m = 7/12.

A titre d'exemple numérique,

soit $f_1 = 1000$ Hz. On desire obtenir un signal à 900 Hz. La solution est la suivante : on a $900 = \frac{9}{10}$ 1000. Il faut donc multiplier par 9, puis diviser par 10, ou diviser par 10 puis multiplier par 9.

SCHEMAS DE MULTIPLICATEURS DE FREQUENCE

Un montage connu de tous, le redresseur bialternance, est également un excellent doubleur de fréquence.

L'effet attendu est obtenu en ne filtrant pas, ou en filtrant peu, le signal redressé. La figure I permet de voir comment s'effectue le doublement de fréquence. En (A), on a représenté le système redresseur utilisant, par exemple, un transformateur T à primaire P et secondaire S à prise médiane, deux diodes identiques D₁ et D₂ et un condensateur C.

Lorsqu'un signal alternatif, par exemple sinusoïdal (mais aussi, tout autre) est appliqué au primaire P du transformateur, le signal du secondaire sera à la même fréquence f_1 . Appliqué aux diodes, il donnera entre les cathodes réunies de D_1 et D_2 et la prise médiane de S, le signal redressé. Le signal d'entrée a la forme (B) de période $T_1 = 1/f_1$. Le signal de sortie, aux bornes de la résistance R, a la forme à impulsions positives indiquée en (C). Sa fréquence est $f_2 = 2 f_1$ et sa période est $T_2 = 0.5 T_1$. Si la capacité C est nulle ou très faible, le signal de sortie reproduit les formes des alternances positives et négatives, mais toutes orientées positivement.

Si C augmente, le signal se rapproche de plus d'un signal continu car le filtrage s'effectue pour absorber les impulsions (Fig. 2). Le signal à impulsion peut être utilisé pour synchroniser des oscillateurs de relaxation qui donneront à leur sortie, des signaux de forme particulière, à la même fréquence f_2 .

Le redressement permet aussi d'obtenir la multiplication par des nombres entiers supérieurs à 2.

DOUBLEUR A CIRCUITS ACCORDES

Voici à la figure 3 un schéma de doubleur de fréquence utilisant des circuits accordés.

Le signal dont la fréquence est f_1 est disponible sur le primaire P_1 d'un transformateur T_1 dont le secondaire S_1 est accordé par C_1 , condensateur variable, sur la fréquence f_1 . En l'appliquant aux diodes D_1 et D_2 on obtient un signal redressé et de fréquence $f_2 = 2f_1$ aux bornes de CV_2 et de la bobine primaire P_2 de T_2 . Le signal à la fréquence f_2 est alors disponible sur le secondaire S_2 de T_2 .

Ce montage est identique à celui d'un détecteur radio bialternance (dit aussi symétrique).

Un tel détecteur donne à la sortie le signal redressé et aussi le signal BF ayant modulé le signal à la frequence f_i . Dans le cas présent, il n'y a pas de signal modulant, le signal d'entrée est simplement périodique, sinusoïdal, rectangulaire, etc.

L'intérêt de l'accord de S_1 par C_1 sur f_1 est de sélectionner le signal fondamental sinusoïdal, à la fréquence f_1 évidemment. Ce signal seul donnera à la sortie (aux bornes de P_2) un signal comme celui représenté en (C), figure 1.

Un signal de cette forme, à la fréquence $f_2 = 2 f_1$ peut être rendu sinusoïdal grâce à l'accord de $D_1 - CV_2$ sur f_2 .

D₁ – CV₂ sur f₂.
Dans ce cas, le signal disponible sur S₂ sera également sinusoïdal. La transformation du signal s'est exercée dans ce montage par le doublement de fréquence.

MONTAGE TRIPLEUR

Les deux dispositifs indiqués plus haut peuvent être utilisés pour obtenir des signaux à $f_2 = n f_1$, n étant égal à 3, 4, etc. En effet, il existe des redresseurs de forme particulière comme celui de la figure 4 donnant à la sortie un signal à $3 f_1$.

D'autre part, on verra que le signal à f_2 de la figure 3 peut être sélectionné à une fréquence plus

élevée que $2 f_1$.

Soit d'abord le schéma de la figure 4 proposé par « Sylvania ». Ce montage est apériodique, dans le sens qu'il n'est pas accordé et, par conséquent, efficace pour des signaux de toutes fréquences. Le signal d'entrée à $f = f_1$ est appliqué aux points a et b, donc aux bornes du potentiomètre R_1 . Celui-ci est du type bobiné, de 1000Ω .

En parallèle sur R₁ se trouve un réseau série composé de deux diodes D₁ et D₂ en parallèle et en tête-bêche, en serie avec une résistance R_2 de 100 Ω 1 W. Il est clair que si l'on considère les points c et d comme sortie, on aura réalisé un montage en pont comme on le montre à la figure 5 sur laquelle le bras a c et le bras c b sont les parties de R, sépares par le curseur de ce potentiomètre relie au point c de sortie. Ce pont non-linéaire donne un signal à $f_2 = 3 f_1$. Il fonctionne bien avec des signaux de l'aibles niveaux de tension inférieure à 1.5 V efficace, de forme sinusoïdale. Le signal de sortie est toutefois de forme « sinusoïdale » déformée ou très déformée.

Voici le principe de fonctionnement de ce tripleur de fréquence. Comme ce pont comprend dans son bras a d, des redresseurs à cristal D₁ et D₂, il ne peut être equilibre que pour une certaine tension car la résistance des diodes change avec la tension qui leur est appliquée. Soit une demi-période de tension alternative sinusoïdale à alternance positive donc partant de zéro jusqu'à une valeur maximale et revenant à zéro. La valeur zero est obtenue deux fois et la tension de sortie passe par zéro quatre fois pendant une demi-période. De ce fait la fréquence du signal de sortie comprend 1,5 période pendant une demi-période du signal d'entrée ce qui correspond bien à trois fois la fréquence. Grâce au montage des deux diodes en têtebêche, chaque moitié de la période du signal d'entrée donne trois. pendant le même temps, 1,5 pé riode du signal de sortie.

Le règlage de R, permet d'obtenir une forme régulière du signal triplé en fréquence. La fréquence peut atteindre 100 kHz. La plupart des diodes habituelles de détection, au germanium, conviennent dans ce montage.

MULTIPLICATEURS DE FREQUENCE ACCORDES

Le montage de la figure 3 peut être réalisé sans système redresseur en se basant sur le fait que le signal d'entrée à la fréquence f_1 n'est pas rigoureusement sinusoïdal. Dans ce cas, il contient les harmoniques de fréquences $2 f_1$, $3 f_1$, $4 f_1$, etc., et il est possible grâce à des filtres appropriés de sélectionner le signal à la fréquence $n f_1$ désirée. L'amplitude du signal sera toutefois faible. Le principe de ce montage ressort du schéma de la figure 6 sur lequel on notera la présence d'un amplificateur symbolisé par un unique

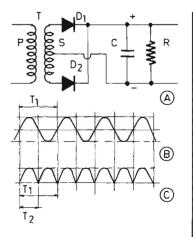


Fig. 1

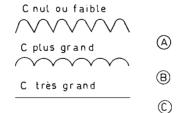


Fig. 2

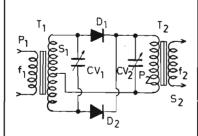
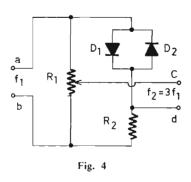



Fig. 3

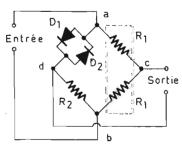


Fig. 5

transistor mais pouvant être aussi bien un amplificateur plus important.

Il est recommandé de faire en sorte que cet amplificateur ne soit pas parsaitement linéaire.

Voici une analyse de ce montage. Le signal d'entrée est à la fréquence f_1 . Il est appliqué au primaire P_1 de T_1 dont le secondaire S_1 est accordé par CV_1 . Le signal à la fréquence f_1 est obtenu sur ce secondaire dont l'accord est réglé sur f_1 . Remarquons la prise effectuée sur S_1 en vue d'une adaptation avec la basse impédance d'entrée sur la basse.

Cette adaptation pourrait être modifiée si le circuit amplificateur était différent, par exemple un circuit intégré ou un transistor à effet de champ ou un transistor bipolaire en montage différent : à base commune ou à collecteur commun. En revenant au montage de la figure 6 et en admettant que Q₁ transmet le signal a $f = f_1$ d'une manière non linéaire, il est évident que sur la sortie de Q, (le collecteur dans ce montage) on obtiendra le signal fondamental à $f = f_1$ et des signaux harmoniques à 2 f_1 , $3 f_1$, de faible amplitude. Ces signaux seront présents dans le primaire P_2 de T_2 et si S_2 est accordée par CV_2 sur la fréquence $f = n f_1$ (par exemple n = 4) on aura aux bornes de S_2 le signal à la fréquence 4 f_1 en proportion presque intégrale et ce signal sera disponible à la

On voit que le principe du montage réside dans les parties suivantes :

l° Source du signal à la fréquence f_1 . Ce signal s'il est sinusoïdal ne contiendra que le signal fondamental.

2º Circuit, généralement amplificateur, non linéaire, donc créateur de signaux harmoniques.

3º Circuit de sélection du signal harmonique désiré.

En pratique on complètera le montage de la figure 7 par un amplificateur linéaire du signal à la fréquence nf. Ce circuit supplémentaire sera monté à la sortie et aura un double rôle :

a) Amplifier le signal qui, normalement, est faible s'il est simplement extrait d'un signal composé en majorité du signal fondamental.

b) Améliorer la sélection sur $f = n f_1$, en possédant des circuits accordés sur $n f_1$.

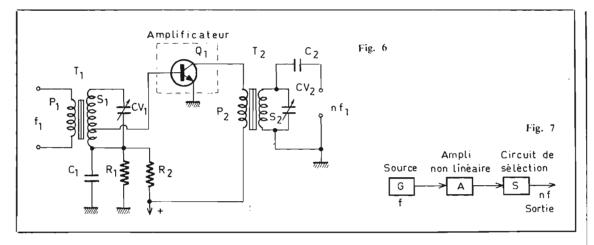
Les amplificateurs non linéaires sont nommés également générateurs d'harmoniques. Un exemple d'amplificateurs de ce genre sont les amplificateurs classe C.

AMPLIFICATEUR-MULTIPLICATEUR 13 MHz à 156 MHz

En effectuant plusieurs multiplications de fréquence, on peut obtenir avec un bon rendement, un signal de 156 MHz à partir d'un signal d'entrée de 13 MHz. Cette technique de multiplications et amplifications successives est appliquée souvent en émission. Voici à la figure 8 un exemple de montage de ce genre, proposé par la RCA. A noter que les multiplications sont rigoureuses.

Il s'agit d'amplificateurs HF. Le signal d'entrée est à 13 MHz et sa puissance est de 5 mW. Ce signal est transmis par C₁ de 5 nF à la base du transistor Q₁ type 40637. Cette base est polarisée, au repos, au potentiel de la masse par l'intermédiaire de la bobine d'arrêt BA. Lorsqu'il y a signal les alternances positives polarisent positivement la base et de ce fait il y a amplification. Celle-ci est donc non linéaire et il y a création d'harmoniques.

Remarquons que par rapport à l'émetteur la base peut devenir négative, l'émetteur étant polarisé par R_1 et découplé par C_2 . Grâce à ce procéde, l'étage à transistor Q_1 fonctionne comme multiplicateur de fréquence.


En l'occurrence, il est tripleur. A cet effet, le circuit à bobine L_1 est accordé sur 13.3 = 39 MHz. Remarquons les condensateurs de découplage C_4 et C_8 , la bobine d'arrêt de 3,9 μ H et le condensateur de liaison C_5 de 0,82 pF, valeur faible obtenue généralement en torsadant sur une faible longueur deux fils isolés formant ce que l'on nomme « queue de cochon ».

Avec ce condensateur on passe à l'étage suivant dont l'entrée comprend la bobine L_2 accordée également sur 39 MHz. Cet accord est effectué par la capacité résultante C, de C_6 et C_7 , en série, ce qui donne $C = C_6C_7/(C_6 + C_7)$. Le calcul donne une valeur de 34 pF environ

A 34 pF il faut toutelois ajouter diverses capacités parasites. Le montage de C_6 et C_7 en série constitue un adaptateur abaisseur d'impédance pour la base de Q_2 type 40637 également. Au point de vue schéma Q_2 , L_3 et L_4 sont montes comme le premier étage comportant Q_1 , L_1 et L_2 .

En fait, les valeurs des éléments sont différentes et adaptées à la fonction de cet étage.

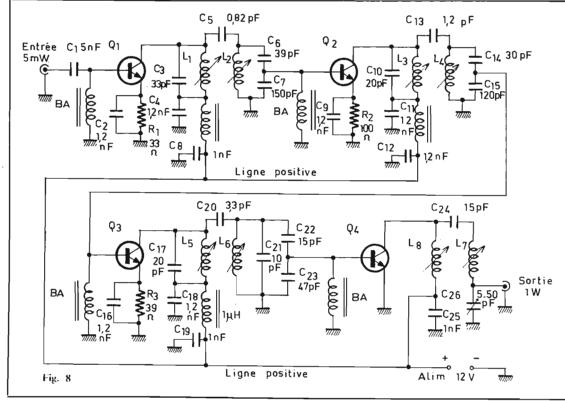
Celui-ci est un étage amplificateur doubleur de fréquence. Pour obtenir ce résultat, L₁ et L₄ sont accordées sur 39.2 = 78 MHz. L'analyse de cet étage est inutile, les éléments étant

disposés comme dans le premier étage. La puissance transmise par le deuxième étage est à peine supérieure à celle de 5 mW du premier étage.

On parvient ensuite au transistor Q_3 type 40637 comme les deux précèdents. Les bobines L_5 et L_6 sont accordées sur le double de la fréquence du signal reçu ce qui donne 2.78 = 156 MHz. C'est à cette fréquence qu'apparaît le signal appliqué au transistor final Q_4 type 40280, un type de puissance ne servant que d'amplificateur permettant de fournir à la sortie, une puissance de I W.

Voici les particularités de montage de Q_4 . L'émetteur est directement connecté à la masse. Dans le circuit de collecteur se trouve une bobine L_8 tandis que C_{24} transmet le signal en circuit serie L_7 - C_{26} .

Le signal à 156 MHz et 1 W est disponible aux bornes du condensateur C₂₆. Il est maximum lorsqu'il y a accord sur cette fréquence entre la bobine et le condensateur.


DETAILS COMPLEMENTAIRES SUR LE MULTIPLICATEUR HF

La puissance d'entrée en HF à 13 MHz est de 5 mW. Lorsque le signal à 39 MHz est obtenu après amplification par Q₁, la puissance reste du même ordre de grandeur car dans le signal de sortie de Q₁, la composante à 39 MHz est de faible puissance par rapport à la fondamentale

De ce fait il a été possible d'adopter le même type de transistor pour Q₁, Q₂ et Q₃. Les deux premiers peuvent être montés sans dissipateur de chaleur. Q₃ doit en comporter un, enfin

Q₄ du type 40280 est un transistor plus puissant et doit être monté avec radiateur dissipateur de chaleur.

Normalement cet amplificateur multiplicateur transmettra des signaux HF modulés en fréquence. Il pourra évidemment être établi pour toutes fréquences voisines de celles indiquées. Pour des émetteurs de faible puissance, l'antenne pourra être connectée à la sortie par l'intermédiaire d'un filtre passe-bas. A remarquer l'absence presque totale de résistances: on n'y trouve que R₁, R₂ et R₃ pour la polarisation des émetteurs. Ce sont des dispositifs de protection empêchant la surcharge des transistors Q₁, Q₂ et Q₃. De cette façon la dissipation de puissance de ces transistors sera limitée aux valeurs permises. Toutes les résistances sont de 0,25 W donc économiques.

Page 210 - Nº 1392

BOBINAGES

On a vu plus haut la fonction sélective des bobinages. La sélection du signal convenable est améliorée par l'emploi de transformateurs à double accord.

Tout probleme de couplage est évité dans ce montage, le primaire et le secondaire de chaque transformateur, par exemple L₁ et L₂, sont blindés, séparément et entre eux, de sorte que le couplage correct n'est déterminé que par la capacité de couplage électrostatique « en tête » comme C₅ pour L₁ et L₂, C₁₃ pour L₃ et L₄, etc.

En raison des fréquences élevées des signaux, les valeurs des capacités de ce montage sont relativement faibles. On pourra réaliser soi-même les bobinages de ce montage.

La méthode la plus simple de réalisation est de calculer à l'aide de la formule de Thomson, leur coefficient L de self-induction en partant de la valeur de la capacité et de celle de la fréquence. La formule à appliquer est :

$$L = \frac{1}{4\pi^2 f^2 C} \text{ henrys}$$

avec L en henrys, f en hertz et C en farads. D'une manière plus pratique, on pourra utiliser la formule :

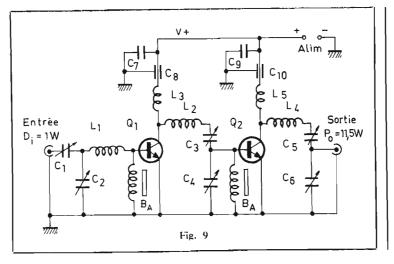
$$L = \frac{10^6}{4 \pi^2 f^2 C} \mu H$$

avec f en MHz et C en pF.

Exemple. Calcul de L_1 . On a f=39 MHz, C=33 pF. La formule pratique s'écrit, avec $4\pi^2=40$:

$$L = \frac{25\,000}{39^2 \cdot 33} \,\mu H$$

ce qui donne $L=0.5~\mu H$ environ.


Il taudra réaliser les bobines sur des mandrins à noyau réglable. On pourra utiliser du fil émaillé de 0,65 mm de diamètre. Pour L, et L, le nombre des spires jointives est de l'ordre de 10 pour L₃ et L₄ il faut environ 5 spires même fil, pour L₅ et L₆, 1,5 spire.

L₇ comporte 2,5 spires de fil de 0,8 mm de diamètre. L₈ 2 spires fil de 0,25 mm, longueur de la bobine 4,7 mm, diamètre de la bobine 4,7 mm.

Les bobines d'arrêt BA se réaliseront avec 4 spires de fil de 0,25 mm de diamètre sur ferroxcube 56-590-45/48.

Ces données ne sont pas critiques, ce qui importe c'est d'accorder correctement chaque transformateur sur la fréquence requise. La puissance à la sortie à 156 MHz, du deuxième doubleur est de 100 mV. donc le gain de puissance de l'étage final doit être de 10 fois.

Rappelons à nos lecteurs que les montages décrits dans la série ABC de l'électromque ne

DOUBLEURS EN FM

En modulation de fréquence et plus particulièrement dans les décodeurs multiplex stéréo à deux canaux, on est amené à utiliser des doubleurs permettant d'obtenir un signal à 38 kHz à partir d'un signal à 19 kHz, dit pilote, reçu de l'emetteur, dans le signal composite BF fourni par le détecteur.

Voici à la figure 10 un exemple de doubleur, 19 kHz à 38 kHz, réalisable avec des transistors et pouvant être utilisé aussi bien dans un décodeur stéréo que dans toute autre application et sur des fréquences légèrement différentes. spires est eleve étant donné qu'il s'agit de fréquences relativement basses :

L₁: primaire 30 spires; secondaire entre prise et masse 80 spires; entre prise et l'autre extrémité: 520 spires.

L₂: primaire 30 spires; secondaire: deux fois 290 spires (580 spires à prise médiane).

L₃: primaire 280 spires; secondaire: deux fois 140 spires.

On utilisera du fil de cuivre émaillé de 0,18 mm de diamètre sauf le secondaire de L₃ qui sera fait en fil de 0,16 mm de diamètre.

· A remarquer que chaque bobinage est à un seul enroulement accordé. Les couplages

sont pas des réalisations. Nous donnons toutefois les valeurs des élèments pour permettre au lecteur de connaître l'ordre de grandeur des valeurs des composants et de se faire une idée précise des montages analysés.

AMPLIFICATEUR DE PUISSANCE

La puissance de sortie de 1 W peut être amplifiée à l'aide d'un amplificateur comme celui de la figure 9. Cet amplificateur haute fréquence est accordé sur 156 MHz. Il fournit à la sortie 11,5 W sur une charge de 50 Ω . L'impédance d'entrée est de 50 Ω également. Le gain de cet amplificateur est 11,5 fois en puissance et sous forme de rapport. Le gain en décibels est donc G (dB) = 10 \log_{10} 11,5 = 10,6 dB environ. L'antenne sera de 50 Ω .

Voici les valeurs des éléments : C_1 à C_6 : ajustables ou variables de 50 pF environ; C_7 et C_9 : 22 nF; C_8 et C_{10} : 1 nF. Q_1 = 40281, Q_2 = 40282 transistors de puissance à monter avec radiateurs dissipateurs de chaleur

Bobinages: L₁ et L₅: I spire fil émail de 0,8 mm de diamètre,

Ligne positive

1kR

1MR

1MR

2

4,7 nF

10 nF

10

sur tube de 6,35 mm de diamètre; L₂ et L₃: 1,5 spire même fil sur 6,35 mm de diamètre; L₄: 2 spires fil de 1 mm de diamètre, sur 6,35 mm de diamètre; BA: bobine d'arrêt 4 spires fil de 0,25 mm sur un support de ferroxcube n° 56-590-65/48. Tous les bobinages seront accordés sur 156 MHz. Pour plus de renseignements sur les montages à transistors RCA cités, voir le manuel RCA Power Circuits Publication SP-51.

Les valeurs des éléments R et C sont indiquées sur le schéma. Voici la nomenclature de transistors, tous des NPN et les caractéristiques des bobinages L₁, L₂ et L₃.

Les transistors sont des Telefunken type BC130. Les diodes sont des Telefunken type AA112.

Il est relativement facile de réaliser les bobinages à condition de disposer d'une machine à bobiner car leur nombre de primaire à secondaire seront très serrés. On accordera L₁ et L₂ sur 19 kHz et L₃ sur 38 kHz.

On pourra calculer les valeurs des enroulements accordés à l'aide de la formule de Thomson. Le réglage d'accord se fera avec le noyau de ferrite ou de ferroxcube du support de chaque bobine.

La marque Vogt a réalisé ces bobinages sous forme de *i* en type D 11-1255.

Connoisseur BD2

Alimentation 110/220 V - Moteur synchrone - Vitesses : 33 1/3 et 45 tr/mn - Changement de vitesses par bouton-poussoir - Entraînement par courroie - Ø plateau 26 cm - Pleurage inf. à 0,1 % - Bras type double cardan incliné à 45 degrés - Socle ébénisterie - Couvercle plexi - Dimensions 36 x 41 x 16 cm (couvercle compris).

mageco HIII electronic 119, rue du Dessous-des-Berges, 75013 PARIS - 4 lignes groupées 707-65-19 + Importateur-distributeur ALWA - CONNOISSEUR - GOODMANS - ONKYO - PICKERING

UN ÉQUIPEMENT RADIO EN MONOCANAL

(Suite voir Nº 1388)

DETAILS DU CABLAGE DES MODULES

L'émetteur E1P/1:

Le câblage de tous les constituants est fait sur une plaquette de circuit imprime, fournie prête à l'emploi, et qui est reproduite en figure 1. Pour tous les appareils, les bobines d'arrêt sont des modèles identiques et se présentent comme un petit cylindre de ferrite traverse par quelques spires de fil nu.

Le transistor haute frequence doit être muni d'un refroidisseur, petite pièce métallique de dimensions appropriées. Le condensa teur ajustable présente parfois 3 broches, dans un tel condensa teur, remarquez que 2 broches sont reliées ensemble.

L'émetteur EST 1 :

Ici ce sont les trois transistors haute fréquence qui doivent être munis d'un dissipateur de chaleur. La plaquette de câblage est représentée en figure 2.

Le récepteur RSC I:

La plaquette de câblage est représentée en figure 3.

Attention... Dans le cas d'un récepteur de radiocommande, on s'efforce toujours de réduire poids et dimensions... Ici cette plaquette fait 65 × 30 mm, c'est dire qu'il faut être particulierement soigneux et attentif. Le câblage est fait « en épi », c'est-à-dire que tous les éléments doivent être disposés verticalement.

Le filtre basse fréquence est livre tout fait, serrer la ferrite suffisamment, mais sans brutalité elle peut casser. Le bobinage d'accord L, doit être confectionné de la façon suivante : sur un mandrin isolant de diamètre 6 mm comportant un novau de réglage avec du fil émaillé 4 dixièmes faire tout d'abord 2 tours sur l'un des ergots, pour fixation; puis bobiner au centre du mandrin 4 spires jointives en enfin terminer par 2 tours sur l'autre ergot. On peut ensuite immobiliser le tout avec de la cire haute fréquence.

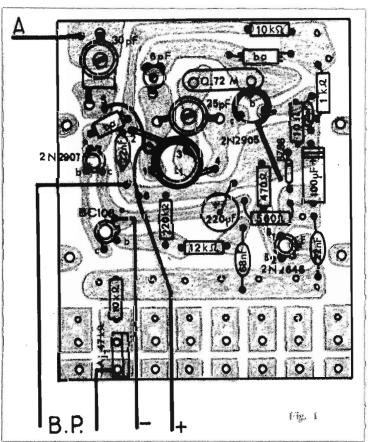
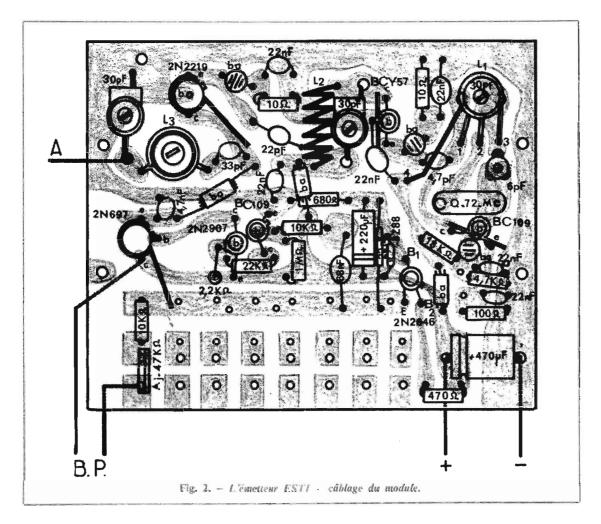



Fig. 1. - L'émetteur El P/1 - câblage du module

La résistance ajustable est disposée horizontalement, pour pouvoir être réglée. Tous les éléments sont très miniaturisés. Signalons entre autres l'emploi de condensateurs au tantale, très petits, ils sont polarisés, le positif est repéré par une croix ou par un point. La valeur peut être marquée en clair, ou suivant le code des couleurs.

Il n'y a aucun élément de réglage pour le démarrage de la superréaction, si l'appareil est correctement exécuté il démarre immédiatement sans aucune recherche. Pour terminer, on entoure la plaquette câblée de mousse de plastique et on l'introduit ainsi dans le coffret métallique. C'est très commode, elle se trouve protégée électriquement (courts-circuits...) et mécaniquement (chocs vibra tions...). L'antenne est constituée par un fil souple isolé de 70 cm environ, ce n'est pas critique. Pour la sortie des fils du coffret, nous avons disposé un petit passant de caoutchouc qui évite le cisaillement.

L. PERICONE.

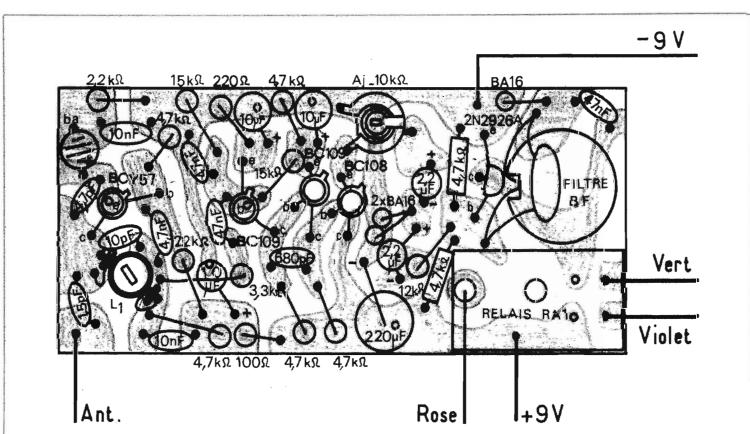
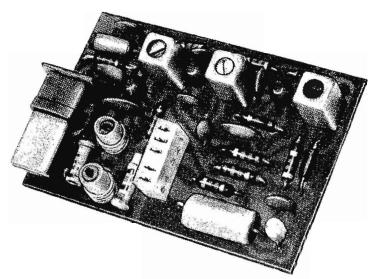


Fig. 3. - Le récepteur RSCI câblage du module

le rēcepteur de radiocommande

CARACTERISTIQUES TECHNIQUES


Tension d'alimentation: 6 V; consommation: ~ 5 mA; fréquence du quartz: 26 670 MHz; fréquence moyenne: 455 kHz; transistors utilisés: 4xBF233/3; diode utilisée: OA200.

Le récepteur superhétérodyne UK 345 AMTRON est caractérisé par une sensibilité, une stabilité et une sélectivité fort élevées. Ces particularités lui permettent d'être utilisé avantageusement sur des modèles terrestres et navals radiocommandés, tout en éliminant les inconvénients auxquels donnent lieu le fonctionnement simultané de plusieurs appareils radiocommandès.

L'UK 345 a été étudié dans le but de permettre aux fervents de la technique radiocommandée de construire un récepteur présentant des caractéristiques supérieures à celles rencontrées habituellement dans les modèles à superréaction.

Ce récepteur, en effet, est caractérisé non seulement par une bonne sensibilité, mais encore par une stabilité et une sélectivité fort élevées. Ces qualités lui permettent d'éliminer la réception d'émissions en provenance de canaux limitrophes. C'est là un point qui est de la plus grande importance; il est bien connu en effet, que la réception d'émissions parasites peut engendrer des signaux de commande indésirables dans le cas de modèles radiocommandés.

La Société Amtron a considéré indispensable le recours à un circuit du genre superhétérodyne, soit le seul permettant d'obtenir simultanément une bonne sensibilité et une sélectivité très poussée. Le circuit de l'oscillateur local a été stabilisé au moyen d'un cristal, du fait qu'un appareil de ce genre est appelé à fonctionner sur une fréquence déter-Pege 216 – N° 1392

minée à l'avance et qu'il se passe d'organes de syntonie. C'est, en fait, le seul systeme permettant d'obtenir une stabilité de fréquence effective.

L'UK 345 peut être utilisc comme récepteur d'une certaine efficacité dans la gamme des 27 MHz; dans ce cas, on devra changer le canal de réception en remplaçant le quartz existant par une autre valeur correspondante.

CIRCUIT ELECTRIQUE

Le schema électrique de l'UK 345 indiqué à la fig. I représente un circuit superhétérodyne à quatre transistors. Ces derniers sont tous du genre BF 233/3, ceci pour en faciliter le remplacement éventuel.

Le circuit d'entrée, à capacité fixe et à accord variable au moyen d'un noyau, est constitué par les bobines L₁ et L₂.

les bobines L₁ et L₂.

Le transistor TR₄ joue le rôle d'oscillateur local contrôlé par un quartz et oscillant sur la fréquence de 26,670 MHz.

Le transistor TR₁ amplifie les signaux à l'arrivée et les convertit à la fréquence de 455 kHz dans les fréquences moyennes. Le signal en provenance de l'émetteur, dont la fréquence est de 27,125 MHz et le signal de l'oscillateur local — de 26,670 MHz comme nous venons de le dire — arrivent simultanément à ce transistor. Le mélange de ces deux signaux permet donc d'obtenir la valeur de la fréquence moyenne : 27,125 – 26,670 — 455 kHz, laquelle constitue la valeur de la fréquence désirée.

Les transistors TR₂ et TR₃ jouent tous deux le rôle d'amplificateurs de fréquence moyenne à haut gain, alors que ce sera la diode D₁, du type OA200, qui se chargera de révéler les signaux.

La résistance R₈ et le condensateur C₁₁, conjointement à la résistance R₂, assurent au circuit un contrôle automatique qui maintient la stabilité du récepteur à des niveaux d'une constance suffisante.

MONTAGE

La boîte de montage de l'UK 345 a été étudiée de façon à ne présenter aucune difficulté de montage. Les instructions

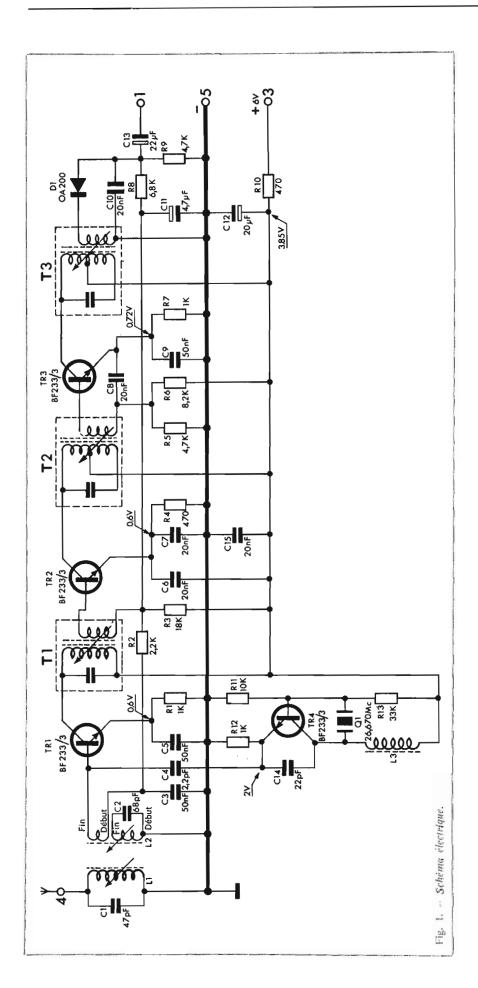
contiennent, en effet, indépendamment de la reproduction photographique et sérigraphique du circuit imprimé, des vues éclatées qui mettent en relief les diverses phases de montage.

PREMIERE PHASE MONTAGE DES COMPOSANTS SUR LE CIRCUIT IMPRIME

• Enfiler et souder les bornes des résistances R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂ et R₁₃ en prenant pour base la disposition sérigraphique de la figure 2/a.

Le corps des resistances devra être placé directement sur la plaquette du circuit imprimé. En effectuant cette opération, veiller tout particulièrement à ne pas intervertir les résistances entre elles; en cas de doute, on fera bien de consulter le tableau explicatif du code des couleurs.

● Enfiler et souder les bornes des condensateurs électrolytiques C_{13} et C_{11} , en s'en tenant aux indications de la sérigraphie et de la figure 3, de manière a ne pas intervertir la polarité.


• Enfiler et souder les bornes des deux condensateurs cérami-

ques C_1 et C_2 .

• Enfiler et souder les bornes des condensateurs C₃, C₄, C₅, C₆, C₇, C₈, C₉, C₁₀, C₁₄ et C₁₅. Ici également, on veillera tout particulièrement à ne pas intervertir entre eux ces condensa-

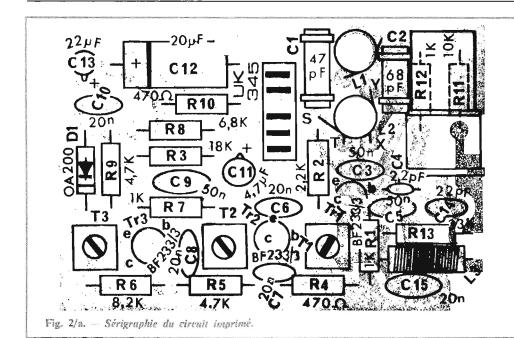
• Enfiler et souder les bornes du condensateur électrolytique C₁₂, en respectant la polarité, comme indiqué dans la sérigraphie de la figure 2/a.

• Enfiler et souder les bornes de la bobine L₃, dont le corps devra être placé horizontalement sur la plaquette du circuit imprimé.

 Enfiler et souder les bornes de la base, du collecteur et de l'émetteur des trois transistors TR₁, TR₂ et TR₃. Ici encore, on veillera avec le plus grand soin à ne pas intervertir entre elles les bornes. Le corps des transistors devra être à environ 5 ou 6 mm du circuit imprimé.

 Enfiler et souder les bornes des trois transformateurs se rapportant à l'amplificateur de fréquence moyenne, T₁, T₂ et T3, en s'en tenant à la sérigraphie de la fig. 2/a. Les noyaux de ces transformateurs sont de couleur différente, de sorte qu'il est impossible de les confondre $(T_1 = \text{jaune}; T_2 = \text{blanc}; T_3)$

= noir).


• Enfiler et souder les bornes de la bobine de couplage L₂, laquelle devra être placée verticalement sur le circuit imprimé, comme le montre la figure 4, de façon que chaque fil terminal aille se loger dans le trou correspondant à chaque lettre.

• Enfiler et souder les deux bornes de la bobine d'entrée L, laquelle devra également être placée verticalement sur le cir

cuit imprimé.

En plaçant les bobines sur le circuit imprimé, veiller avec le plus grand soin à ce que les fils enroulés ne se détachent pas. Il est conseillé, en outre, de mettre quelques gouttes de colle sur la partie latérale desdites bobines.

- Monter le connecteur à cinq prises, qui devra être placé sur le circuit imprimé de manière que ses cinq bornes (un groupe de deux et un groupe de trois) pénètrent exactement dans les trous correspondants. Souder la base desdites bornes sur le circuit imprimé. Veiller, au cours des opérations, à ne pas plier ni couper la partie des bornes qui dépasse et qui servira à effectuer les connexions : c'est à elles, en effet, qu'aboutissent l'alimentation (pôles positif et négatif), l'entrée autrement dit l'antenne, et la sortie.
- Souder les bornes de la diode D₁, OA200, en respectant la polarité indiquée dans la sérigraphie à la figure 2/a.
- Monter sur la plaquette prévue à cet effet le transistor TR4 et la douille porte-quartz, en s'en tenant à la vue éclatée de la figure 5.
- Souder les fils terminaux de la plaquette porte-quartz sur le circuit imprimé CS, en la plaçant comme le montrent clairement les figures 5 et 6. La plaquette en question devra reposer sur le circuit imprime CS, et les pistes devront être soudées du côté cuivré.

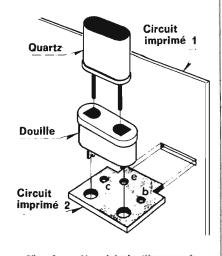


Fig. 5. - Vue éclatée illustrant le montage, sur le circuit imprimé de la fig. 2/b, de la douille du quartz, et du quartz, lui-même.

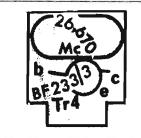
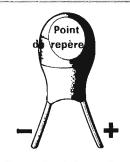
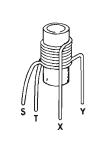
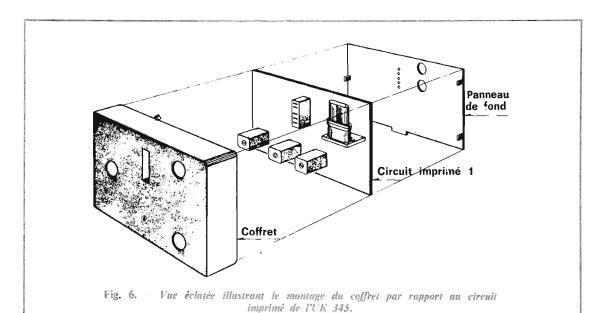




Fig. 2/b. - Sérigraphie du circuit imprimé indiquant la position de la douille du quartz et du transistor Fig. 3. - Polarité des condensateurs Fig. 4. - Disposition des fils termi-


électrolytiques C_1 , et C_1 ,.

naux de la bobine 1.2.

DEUXIEME PHASE MONTAGE DU CIRCUIT IMPRIME DANS LE COFFRET

 Enfiler le circuit imprimé dans le coffret, de façon que l'on puisse accéder au connecteur à travers l'ouverture correspon dante du cossiret et que les cinq bornes dudit connecteur ressortent par les trous correspondants du panneau de fermeture. Observer la vue éclatée de la figure 6.

DU RECEPTEUR AU MOYEN D'UN GENERATEUR DE SIGNAUX

MISE AU POINT

Cette mise au point ne présentera aucune difficulté si on dispose d'un generateur de signaux. On procedera de la façon suivante :

- Alimenter le récepteur à 6 V.
- Connecter le générateur de signaux, syntonise sur la fréquence de 455 kHz et modulé à 400 ou 1 000 Hz au 30 %, au circuit de base du transistor TR₁, au moyen d'un condensateur d'une capacité de 10,000 pF.
- Connecter un millivoltmètre à la sortie.

Page 218 - Nº 1392

- Régler le novau de T, de maniere à obtenir une déviation maximum du millivoltmetre, apres quoi on reglera les noyaux des transformateurs T2 et T1. Répéter plusieurs tois ces opérations, la mise au point d'un circuit pou vant influer legerement sur celle de l'autre circuit.
- Syntoniser le genérateur de signaux sur la frequence de 27,125 MHz et le connecter à la prise de l'antenne (nº 4 de la figure 1) au moyen de 60 cm de fil isolé.
- Regler le noyau de la bobine L, de manière que le millivoltmetre indique une deviation maximum. Ceci tait, régler le noyau de la bobine L₂, toujours de manière que le millivoltmètre indique une déviation maximum. Dans le cas où l'on se trouverait en présence de deux indications différentes en ce qui concerne la mise au point du noyau de la bobine L2, se régler sur l'indication maximum du millivoltmètre. Répéter les opérations sus indiquées.

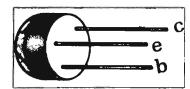
MISE AU POINT SANS INSTRUMENTS

Dans le cas où l'on ne disposerait d'aucun générateur de signaux, on pourra remplacer ce dernier par l'émetteur UK 300. Ce dernier devra être tenu à une certaine distance du récep teur de manière que le signal ne soit pas perçu d'une façon trop intense.

 En ce qui concerne le circuit oscillateur, aucune opération de mise au point n'est nécessaire.

On pourra brancher un casque à la sortie du récepteur, éventuel lement en recourant à un ampli ficateur.

On réglera en premier lieu le noyau des transformateurs de movenne frequence T_1 , T_2 et T_1 . de manière que le millivoltmetre accuse une deviation maximum à la sortie. Ceci fait, et comme indiqué plus haut, on répétera plusieurs fois les opérations ci dessus. On procédera ensuite au réglage des noyaux des bobines L_1 et L_2 .


Il va de soi que cette façon de proceder exige que l'emetteur soit syntonise sur la fréquence demandée de 27,125 MHz.

UTILISATIONS

Le récepteur UK 345 pourra être employé pour n'importe quelle opération de radiocommande conjointement aux groupes canaux UK 325 et UK 330 et à l'emetteur UK 300.

Comme déjà dit, cependant, il pourra également être utilisé comme récepteur d'une certaine efficacité pour la réception de la gamme des 27 MHz. Dans ce cas, l'UK 345 devra être relié à un amplificateur de basse fréquence, alors que le quartz de l'oscillateur local devra être choisi de manière que la différence entre la fréquence que l'on désire recevoir et celle dudit quartz soit égale à la valeur de la fréquence moyenne, soit 455 kHz.

L'antenne du récepteur, enfin, devra être construite avec 60 cm de fil isolé.

VALEURS MAXIMUM ABSOI	(T _A = 25 °C)		
Tension collecteur-base Tension émetteur-base	V _{CB} V _{EB}	30 4	V V
Tension collecteur-émetteur (base ouverte)	V _{CEO}	30	V
Tension collecteur-émetteur (base en court-circuit)	V _{CES}	30	V
Courant de collecteur Puissance dissipée totale	I _C P _D	30 300	mA mW
à T _A = 25 °C Température de jonction	$T_{ m J}$	125	°C
Température d'emmagasinage	T _S	- 55 + 125	°C

DISPOSITION DES BORNES ET CARACTERISTIQUES **DU TRANSISTOR UTILISE**

(Fig. 7)

Le transistor NPN « planar » épitaxial BF 233 est tout indique pour l'emploi de l'oscillateurmélangeur OM-OC, comme amplificateur de fréquence moyenne AM-FM et comme amplificateur de frequence moyenne audio TV.

POUR LES-MODELISTES

PERCEUSE MINIATURE DE PRÉCISION (nouveau moděle)

indispensable pour tous travaux délicats sur BOIS, MÉTAUX, PLASTIQUES

Fonctionne avec 2 piles de 4,5 V ou transforedresseur 9/12 V. Livrée en coffret avec jeu de 11 outils permettant d'effectuer tous les travaux usuels de précision : pro-cer, poncer, fraiser, affâter, polir, seier, en

Autre modèle, plus puissant avec 1 jeu

de 30 outils. Prix (franco 123,25).... .. 120,25 Facultatif pour ces deux modèles : Support permettant l'utilisation en perceuse sensitive (position verticale) et touret miniature (position horizontale).

Supplément. ··34,90 Notice contre enveloppe timbrée

LES CAHIERS de RADIOMOOÉLISME Construction par l'image de A à Z (36 pages) :

D'un avion radiocommandé , 10 F D'un bateau radiocommandé..... 10 F

Unique en France et à des prix compétitifs toutes pièces détachées MECCANO et MECCANO-ELEC en stock.

(Liste avec prix contre enveloppe timbrée.)

TOUT POUR LE MODÈLE RÉDUIT (Train - Avion - Bateau - Auto - R/C)

Toutes les fournitures : bois, tubes colles, enduits, peintures, vis, écrous, rondelles. etc.

Catalogue contre 3 F en timbres

RENDEZ-NOUS VISITE CONSULTEZ-NOUS Le meilleur accueil vous sera réservé

<u>CENTRAL-TRAIN</u>

81, rue Réaumur - 75002 PARIS C.C.P. LA SOURCE 31.656.95

En plein centre de Paris, face à «France-Soir» M° Sentier et Réaumur-Sébastopol Tél.: 236-70-37

RAPID-RADIO

TÉLÉCOMMANDE

64, RUE D'HAUTEVILLE PARIS (10°) - Tél. : 770-41-37 C.C.P. Paris 9486-55

Métro : Bonne-Nouvelle ou Poissonnière Ouvert de 9 h 30 à 12 h et 14 h à 18 h 45 (sauf dimanche et lundi matin)

Ensembles proportionnels digitaux Space Commander », 4 voies, 4 servos. Prix. 1 550 F

« Bell Star », 2 voies, 2 servos. 730 F

Emetteur proportionnel 4 voies, (extensible), tout à circuits intégrés. La platine en kit.

Récepteur décodeur 4 voies, en kit.

175 F

Ampli de servo en kit Ensemble monocanal de puissance spé-

cial pour ouverture de porte de garage. Emetteur-récepteur en kit. 190 F GRAND CHOIX D'ENSEMBLES « TOUT OU RIEN »

TOUTES LES PIÈCES DÉTACHÉES

pour télécommande :
Vu-mètres, antennes, quartz, filtres BF, transistors, condensateurs céramiques, mylar chimiques, tantale, résistances 1/4 et 1/2 W, transfo MF, etc.
Egalament tout le matériel nécessaire

à la fabrication de CIRCUITS IMPRIMÉS :

Tubes ultra-violets, selfs, starters sup-ports, pastilles transfert, bande adhé-ove Dual in line résine etc.

Documentation c 4 F en timbres « Service après vente » RAPIDE ET SERIEUX REMISE SPÉCIALE POUR LES CLUBS Remise SPECIALE POUR LES CLOBS Expédition c. mandat, chêque à la com mande, ou c. remboursement (metropole seulement), port en sus 7.50 F Pas d'envois pour comunantes inférieures a 20 F

LISTE DES COMPOSANTS

 $R_1 R_2 R_3$: resistances de 1 kQ. R₂: resistance de 2,2 k₁₂.

R; : résistance de 18 kQ.

 $R_4 R_{10}$: résistances de 470 Ω .

 $R_s R_g$: résistances de 4.7 k Ω .

R₆: resistance de 8,2 k₁₂.

R_R: resistance de 6,8 kg.

 R_{11} : resistance de 10 k_{12} .

 R_{13} : résistance de 33 kg.

C₁: condensateur de 47 pF. C₂: condensateur de 68 pF.

C₁C₂C₉: condensateurs de 50 nF.

C₄: condensateur de 2,2 pF.

C₆ C₇ C₈-C₁₀ C₁₅ : condensateurs de 20 nF.

C11: condensateur électrolytique de 4.7 µF.

C12 : condensateur électrolytique de 20 nF.

C₁₁: condensateur électrolytique de 22 nF.

C₁₄: condensateur de 22 pF. D₁: Diode OA 200.

TR, TR, TR, TR, : transistors BF 233/3.

L₁ L₂ L₃: bobines.

T₁: transformateur de frequence moyenne (jaune).

T2 : transformateur de frequence movenne (blanc).

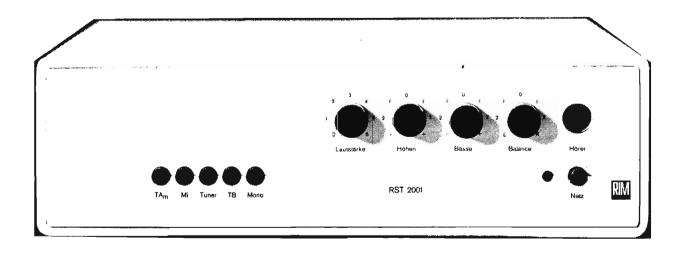
T₁: transformateur de frequence movenne (noir).

connecteur à 5 positions.

: douille pour quartz.

Q_i: quartz miniature 26,670 MHz.

CI, CI, : circuits imprimes.


coffret.

: Fil étame.

(Realisation: AMTRON)

Nº 1392 - Page 219

Bim BST 2001

A firme allemande RIM vient de commercialiser un nouvel amplificateur stéréophonique destiné à être utilisé conjointement avec le tuner FM UKW 2001 décrit dans notre précédent numéro.

Comme il est d'usage pour les ensembles de cette firme, tout le matériel nécessaire à la réalisation de cet amplificateur peut être acquis sous forme de « kit » ce qui constitue une solution séduisante au niveau de l'ama teur.

La présentation générale de l'amplificateur reprend dans ses grandes lignes celle du tuner afin de constituer un ensemble parfaitement harmonisé. Cet amplificateur peut toutefois être utilisé comme maillon principal d'une chaîne haute fidélité car ces performances répondent aux normes DIN 45 500.

PRESENTATION

L'esthétique de l'appareil est fort bien étudiée. Les stylistes n'ont en effet accordé aucune part à la fantaisie, l'ensemble reste très pur et très sobre dans ses lignes. Pour ce faire, un minimum de commandes utiles a été harmonieusement regroupé sur la face avant de l'appareil.

Une première serie de commandes rotatives occupe la partie droite de l'amplificateur. Il s'agit des règlages de volume, aigues, basses et balance agréablement complètés de la prise de casque.

Un contacteur à cinq touches équilibre la présentation tout en constituant le commutateur de fonctions ou de sélection des entrées. Le dermet poussoir est celui du mode de fonctionnement mono ou stéréo de l'amplificateur.

Un voyant lumineux associé au contacteur arrêt/marche enrichit la présentation.

CARACTERISTIQUES GENERALES

Puissance de sortie : 2×30 W musique, 2×25 W efficaces.

Distorsion harmonique
 ≤ 1 % à 1 kHz.

- Réponse en fréquence 30 à 20 000 Hz + 1.5 dB.

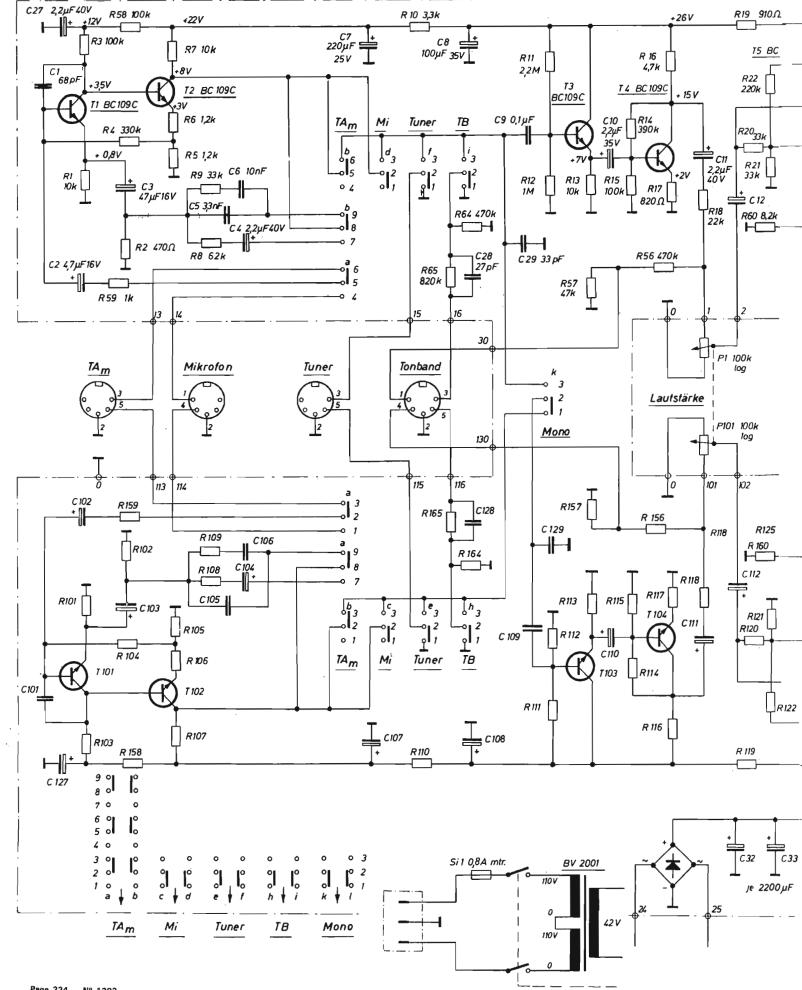
Entrees microphone $3 \text{ mV/10 k}\Omega$ P U magnetique 3.5 mV/4 i k Ω : tuner 200 mV/ \geqslant 200 k Ω : P.U. cristal 600 mV/ $800 \text{ k}\Omega$: Auxiliáire 250 mV/ $47 \text{ k}\Omega$.

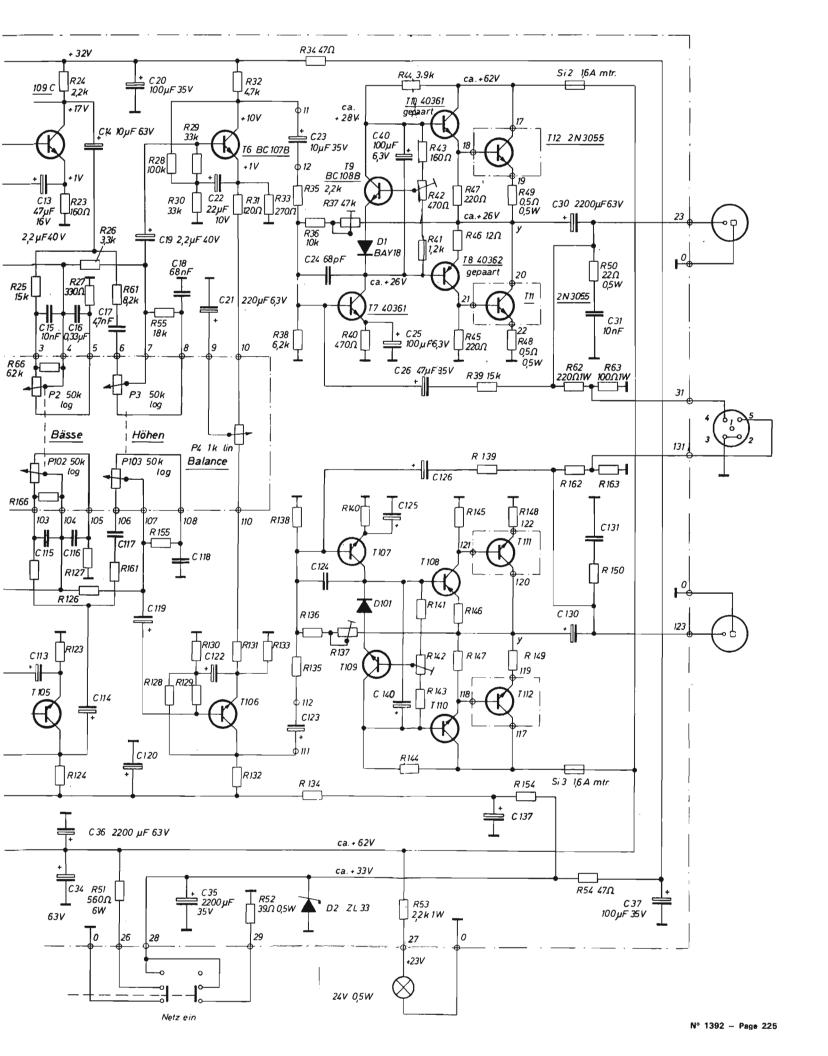
Efficacité des correcteurs de tonalite : aiguës : + 15. 20 dB à 10 kHz graves : + 15. 20 dB à 30 Hz.

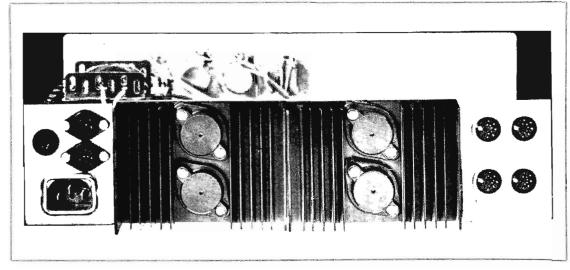
Rapport signat/bruit 60 dB.

- Impédance de sortie - 4 à 16 Ω .

- Sortie casque impédance $4 \text{ à } 2000 \Omega$.


Alimentation 110/220 V. Dimensions $325 \times 245 \times 100$ mm.


LE SCHEMA DE PRINCIPE


Il repose sur un ensemble de circuits ou montages classiques mais d'un fonctionnement cprouve, gage de fiabilité indéniable. Le schéma de principe peut se scinder en plusieurs sous-ensembles dont nous allons détailler successivement toutes les parties.

PREAMPLIFICATEUR EGALISATEUR

Les tensions délivrées par une celluie magnétique phonocap trice de quelques millivolts ou N° 1392 - Page 223

d'un micro nécessitent l'emploi d'un préamplificateur. Qui plus est, la gravure des disques exige une correction de la courbe selon des normes très précises RIAA standard.

Il en résulte que les tensions issues des prises DIN micro ou P.U. magnétique sont injectées par l'intermédiaire d'un condensateur et d'une résistance série sur la base du transistor T4. Le preamplificateur utilise un tandem à liaison directe de deux transistors BC109C à faible souffle. Cette disposition améliore sensiblement les performances de l'ensemble sans pour autant affecter la stabilité du montage, les transistors NPN ayant des courants de fuite résiduels très faibles.

La polarisation de base du transistor T₁ d'entree est prise sur l'émetteur du transistor suivant par l'intermédiaire des résistances R₅ et R₆. Le condensateur C, de 68 pF permet d'augmenter la stabilité de l'étage en freinant les oscillations parasites qui pourraient survenir aux fréquences élevées.

C'est sur la résistance de charge R, que les signaux BF simplifiés sont pris et appliqués directement à la base du tran sistor suivant. La polarisation en continu de cet étage est procurée par la différence de potentiel apparaissant aux bornes de cette résistance.

Chaque émetteur est par ailleurs soumis à une contreréaction locale R₁, C₃, R₂ et R₆, R₅. Suivant la position et la sélection effectuées au niveau du contacteur, une correction dissérente est realisée. Ainsi, en position TAm. une correction selective et conforme au standard RIAA permet de jouer sur la sensibilité et le modele de la courbe de réponse (R₉, C₆ et C₅).

En position microphone il est nécessaire de disposer d'une correction linéaire, rôle de la resistance R₈ associée au

condensateur C4.

Suivant la position des contacteurs, les signaux amplifiés et corrigés sont appliqués d'une part à la prise magnétophone pour enregistrement et d'autre part à l'étage préamplificateur proprement dit.

PREAMPLIFICATEUR GENERAL

Là encore, le constructeur a fait appel à deux transistors identiques en résérence. Mais il s'agit cette fois-ci d'étages adaptateurs d'impédances destinés à satisfaire les impédances d'autres sources de modulation.

A cet effet, le transistor T, est monté en collecteur commun, c'est-à-dire que l'on retrouve la résistance de charge côté émetteur. Comme on peut le constater ce transistor est polarisé par un pont de résistances de 2,2 MQ et 1 MQ eu égard à son impédance d'entrée élevée. A ce niveau s'effectue l'entrée tuner par l'intermédiaire d'un condensateur de 0,1 µF et également l'entrée P.U. TB à l'aide d'un diviseur de tension 820 kQ/ 470 kΩ.

Le transistor T₃ est suivi d'un étage émetteur commun en l'occurrence T₄. Le circuit d'entrée est convenablement polarisé

par les résistances R₁₄ et R₁₅. Au niveau de l'émetteur on réalise une contre-réaction locale à l'aide de la résistance R₁₇ alors que les signaux BF amplifiés sont prélevés sur le collecteur de T₄ grâce à la résistance de charge

R₁₆.
Ces tensions BF sont ensuite injectées sur le potentiomètre de volume P1 par l'intermédiaire d'un condensateur et d'une résistance série. A ce niveau est aussi prévue une prise d'attaque par l'intermédiaire d'un autre diviseur de tension 47 k/470 k(2).

A cet étage préamplificateur est associé un autre étage à haute impédance d'entrée (conférer la valeur de $P_1 = 100 \text{ k}\Omega$). Pour ce faire on prévoit un montage « bootstrap » à réaction positive. Cette réaction est entretenue par le condensateur C13. L'entrée s'effectue au niveau de la base mais le dispositif de polarisation reste différent des précédents montages.

Ces tensions BF amplifiées possedent une amplitude suffisante pour être injectées à l'étage correcteur de tonalité. Il s'agit d'un très conventionnel mais efficace correcteur Baxandall, toutefois l'alfaiblissement apporté par ce dernier nécessite la presence d'un étage supplémentaire, T₆ équipé d'un transistor BC107B.

Le constructeur là aussi, a eu recours afin de respecter les conditions d'impédance à un montage « bootstrap », lui permettant d'insérer un dispositif de balance « actif » par analogie au dispositif conventionnel. En effet, il ne s'agit pas d'un montage classique avec curseur à la masse. Le potentiomètre P4 permet de jouer sur la contre-réaction locale d'émetteur de T₆ et par conséquent sur le gain total de l'étage.

Dans le circuit collecteur du transistor T₆, une resistance charge permet de prélever les tensions BF destinées à attaquer l'amplificateur de puissance.

AMPLIFICATEUR DE PUISSANCE

L'amplificateur de puissance fait appel à cinq transistors silicium, l'étage de sortie est par ailleurs, équipé de transistors 2N3055.

Les transistors d'attaque et de sortie sont tous couplés par des liaisons continues. La résistance variable R₃₇ permet de fixer le courant de répos et par-là le point de fonctionnement de l'amplificateur puisque de part les liaisons continues la moindre action sur le courant de base du transistor T, fait varier le courant de repos des transistors T₈ à T₁₂.

Au niveau du transistor driver T, et entre base et collecteur, un condensateur de 68 pF évite les accrochage éventuels de cet étage de puissance en limitant l'amplification aux fréquences élevées. Sur cet étage est insére dans le circuit émetteur une contre réaction locale, tandis que les éléments C₂₆ et R₃₉ constituent la boucle de contre-réaction générale de l'ensemble.

Le transistor T_o et les éléments associés à D₁ servent à compenser les dérives en température, cette protection est du reste complétée par l'utilisation de fusible à fusion rapide en série dans le circuit d'alimentation générale.

Puisqu'il s'agit d'un étage de sortie quasi complémentaire, le déphasage nécessaire au bon fonctionnement de l'ensemble est obtenu par l'utilisation de deux transistors complementaires T_R et T₁₀. Les transistors de sortie 2N3055, montés sur de très larges radiateurs sont alimentes sous 62 V. Ces transistors sont d'ailleurs dotés de résistances d'émetteurs de stabilisation en température.

Un condensateur électrochimique de 2 200 uF coupe la composante continue du pushpull d'alimentation série, tout en

AMPLI-PRÉAMPLI STÉRÉO 2 × 30 WATTS ●

- R.S.T. 2001 -

PUISSANCE $\begin{cases} 2 \times 27 \text{ watts sinus} \\ 2 \times 30 \text{ watts musique} \end{cases}$

* TAUX DE DISTORSION ≤ 5%

BANDE PASSANTE : de 20 Hz à 20 000 Hz + 1.5 dB 4 ENTRÉES : Micro 3 mV/20 k

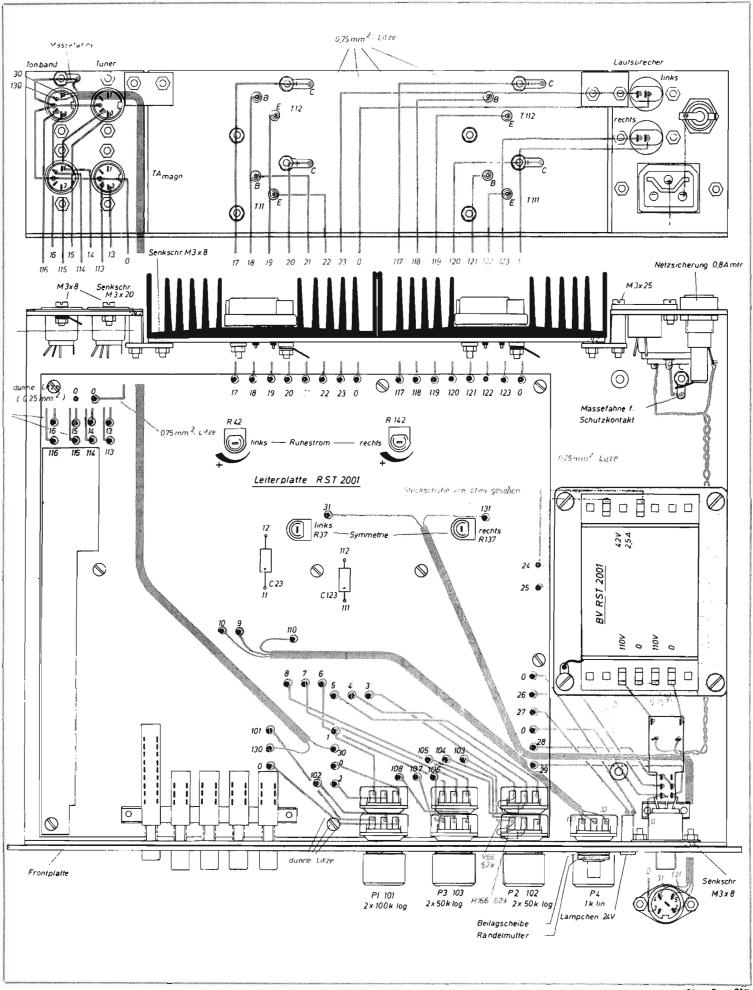
PU magnétique : 3.5 mV/47 k Tuner: 300 mV

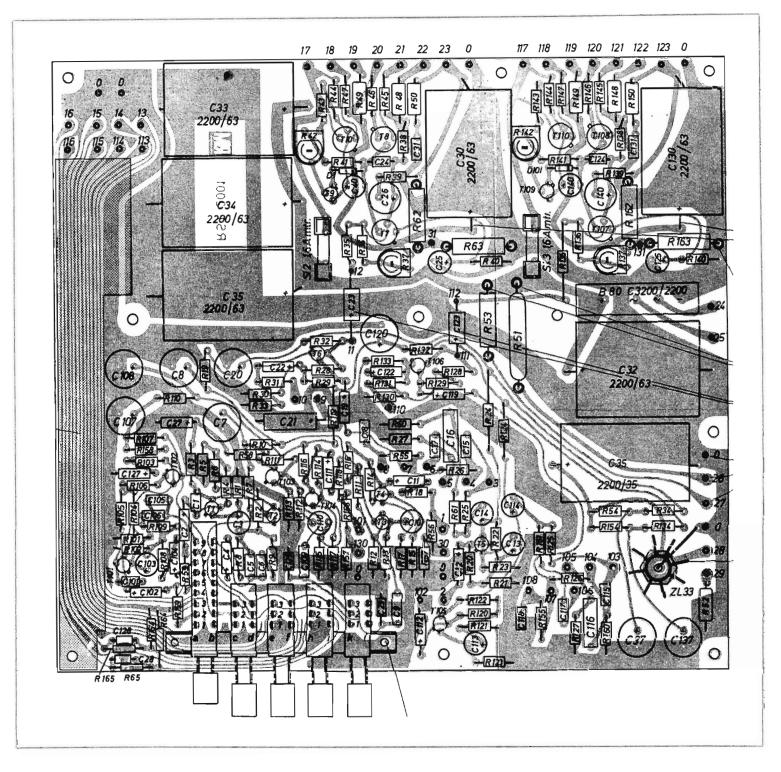
Magnéto ou PU Cristal : 500 mV - SORTIE MAGNÉTOPHONE : 50 mV

- Impédances de sortie : 4 8 et 16 ohris - PRISE CASQUE

Dim.: 325 × 245 × 95 mm DISTRIBUTEUR EXCLUSIF :

Comptoirs


CHAM/PIONNET


14, rue Championnet, PARIS-18°

Tél.: 076-52-08

C.C. Postal: 12.358 30 PARIS

CATALOGUE « Pièces détachées » contre 5 francs pour frais.

procurant du fait de sa valeur, une bonne réponse aux très basses fréquences.

La sortie casque fait, quand à elle, appel à un adaptateur d'impédance, en l'occurrence les résistances R_{62} et R_{63} .

L'ALIMENTATION

L'alimentation générale de l'amplificateur comprend un transformateur largement dimensionné dont le primaire permet le raccordement sur un réseau à Pege 228 - N° 1392

110 ou 220 V. Le secondaire, quant à lui, délivre 42 V sous 2,5 A. Le redressement s'effectue par l'intermédiaire d'un pont à quatre diodes suivi de quatre condensateurs électrochimiques de 2 200 uF.

La tension redressée et filtrée de 62 V est alors appliquée aux amplificateurs de puissance sans stabilisation préalable, toutefois l'ensemble des capacités constitue un effet réservoir garantissant de très faibles fluctuations.

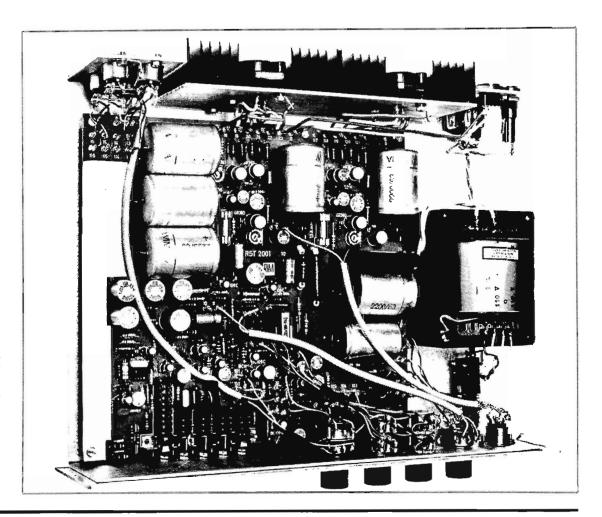
On peut également remarquer que sur cette alimentation la

touche marche/arrêt soustrait totalement l'appareil du réseau de distribution et, qu'en même temps, les résistances R_{51} et R_{52} déchargent les condensateurs électrochimiques. Par ailleurs, cette résistance R_{51} constitue une cellule de filtrage en « π » à l'aide du condensateur C_{35} , la tension est cependant stabilisée et maintenue à 33 V par l'intermédiaire de la diode zener D_2 .

Tous les autres étages sont alors successivement alimentés à travers des cellules de filtrage cascades, ce qui permet de garantir une stabilité de fonctionnement intéressante.

CONCEPTION ET MONTAGE

L'amplificateur RST2001 utilise comme support de base un châssis en forme de « U » dont les dimensions n'excèdent pas 315 × 245 × 85 mm.


Les transistors de puissance sont montés sur de larges radiateurs occupant la majeure partie de la face arrière de l'appareil. Les transistors eux-mêmes reçoivent des capots isolants de protection afin d'éviter tout court-circuit accidentel. Le reste de la surface est occupé sur la droite par les quatre prises DIN d'entrées et sur la gauche par les prises secteur, H.P. et le fusible. L'important transformateur d'alimentation trouve largement sa place sur le côté droit de l'amplificateur.

Tous les composants électroniques sont montés sur une seule carte ou module de 220 x 195 mm. Seuls les transistors de sortie et les divers potentiomètres de réglages ramenés sur la face avant ne font pas partie intégrante de ce module, par contre, même les importants condensateurs de filtrage de l'alimentation et la diode zener prennent place sur le circuit imprimé.

Comme à l'accoutumée ce dernier est fourni avec l'ensemble en « kit », si bien que l'amateur n'a plus qu'à implanter judicieusement les composants conformement à la carte reproduite page 228 où les détails du circuit imprimé apparaissent en transparence.

Pour éviter toutes liaisons trop importantes, le contacteur de fonctions à touches est directement monté sur le circuit imprimé ce qui facilite grandement les liaisons intermodules dont la figure de la page 227 représente l'essentiel.

Il est également à préciser que tous les éléments de ce kit, comme pour la précédente réalisation, peuvent être acquis séparément.

E. R. T.

11, faubourg Poissonnière - 75009 PARIS

VENTE PAR CORRESPONDANCE UNIQUEMENT

IMPORTATION DIRECTE - Un aperçu de nos prix :

Cassettes BASF Hi-FI LH : C 60, les 6	53,40 F franco		
	C 60, les 6		
Cassette nettoyante non abrasive	10 F franco		
Cassette stéréo 8 pistes vierge : 40' Cassette stéréo 8 pistes vierge : 60'			
Micro pour mini-cassette type Philips	29 F franco		
Casque stéréo SHII	45 F franco		
Cellules SHURE en boîte d'origine avec			
Cellule Shure 55/E 125 F franco C	ellule Shure 75/6S 100 F franco		
Diamant Shure 55E 108 F franco P	Diamant Shure 75/6 type 2. Prix		
Cellules ELAC en boîte d'origine avec diamant ELAC d'origine Cellule Elac STS 244/17			
Cellule DUAL CDS651/6: 59 F franco - Dia	amant d'origine DN64 : 59 F franco		

DIAMANTS ET CELLULES TOUS MODÈLES AU PRIX DE GROS :

nous consulter

PAS DE FRAIS D'ENVOI: Toutes nos expéditions franco de port pour la France métropolitaine; joindre chèque ou mandat à la commande.

matériel de haute fidélité disques classiques d'importation et de collection

coriolan

le plus bel auditorium d'aquitaine 3 salons d'écoute 31, rue lafaurie-monbadon tél: 44.60.73 bordeaux

CARACTERISTIQUES

Puissance maximale: 2×25 W sur charges de 4 Ω .

Bande passante : 20 Hz - 20 kHz \pm 1,5 dB.

Distorsion harmonique: 0,07 % pour une puissance de 1 W Séparation des canaux: 60 dB.

Rapport signal/bruit : - 75 dB entrées haut niveau, - 55 dB entrées bas niveau.

Entrées:

PU magnétique, 3.5 mV, surcharge 40 mV.

PU céramique, 120 mV, sur charge 1,8 V.

Tuner, 0.5 V, surcharge 6 V. Auxiliaire, 250 mV, surcharge

Sorties : enregistrement magnétique, casque, enceintes avant, enceintes arrière, enceintes se condaires.

Correcteurs de tonalité : séparés sur chaque canal.

Balance : par action de la commande de volume, séparée sur chaque canal.

Correction physiologique commutable.

Alimentation : 220 V - 50/ 60 Hz.

Encombrement: 270 x 220 x 89 mm, pour un poids de 3.6 kg

AMPLIFICATEUR LAFAYETTE LA 375

▼ ET amplificateur comporte un système de raccordement pour quatre enceintes permettant d'obtenir un effet de stéréophonie à 4 canaux à partir d'un signal stéréophonique normal. Il s'agit donc pseudo-stéréophonie à d'une 4 canaux, qui donne un effet avant-arrière lorsque l'on utilise deux paires d'enceintes, et qui présente l'avantage de ne pas gréver le prix d'une installation, car l'appareil est d'un type stéréo classique, seule une commutation met en service la paire d'enceintes arrière et permet donc d'obtenir un effet en ajustant son niveau d'attaque.

Le constructeur a été sage d'offrir cette possibilité, sans chercher à adopter un système quadriphonique existant, car aucun d'entre eux ne fait à l'heure actuelle l'objet d'une standardisation.

L'amplificateur est de bonne facture, et permet de constituer une chaîne Hi-Fi intéressante, en bénéficiant à peu de frais (4 enceintes) d'une exploitation quadriphonique.

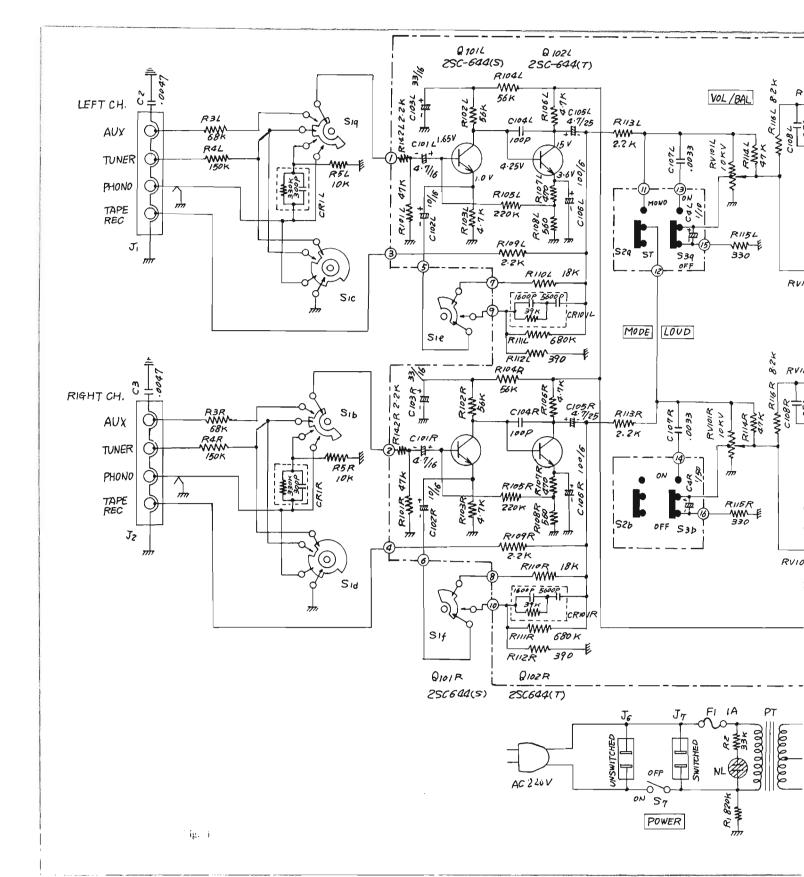
PRESENTATION

Le constructeur s'est attaché à offrir un appareil d'aspect sobre, qui puisse être installé dans n'importe quel intérieur. Le panneau avant est dépouillé, les commandes très bien disposées. L'habillage du coffret métallique est réalisé par un revêtement plastique présentant l'aspect du bois.

Les potentiomètres sont à commande coaxiale, et le commutateur selecteur d'entrées est situé sur le côté gauche.

Les commutations du correcteur physiologique et des combinaisons d'enceintes s'effectuent à l'aide d'interrupteurs à touches, les diverses possibilités de raccordement sont les suivantes : « Main », les deux enceintes principales sont alimentées; 4 CH, les enceintes avant et arrière sont en service; REM et 4 CH, les enceintes arrière sont alimentées ainsi qu'une seconde paire d'enceintes avant; 2 CH, on peut utiliser au choix et selon la commutation « Main » ou REM, l'une ou l'autre paire d'enceintes avant.

Sur le panneau arrière, nous trouvons un petit commutateur permettant d'ajuster le niveau des signaux destinés aux enceintes arrière lorsqu'elles sont utilisées, et d'adapter ainsi l'effet de stéréophonie à 4 canaux. Les différents raccordements sont réalisés sur prises CINCH, à l'exception des enceintes avant principales qui sont effectuées sur une plaquette à bornes. Deux fiches réseaux sont installées pour alimenter les autres constituants de la chaîne, l'une com mandée par le bouton arrêtmarche pour une puissance de 200 W, la seconde non commandée pour une puissance de 300 W. Les fusibles de protection des amplificateurs de sortie et du transformateur sont aisé ment accessibles.


Le raccordement à un magné tophone est prévu pour l'enre gistrement sur la sortie disposée à cet effet, pour la lecture, le câble doit être disposé sur la prise entrée auxiliaire, et le commutateur fonction du panneau avant positionné sur AUX.

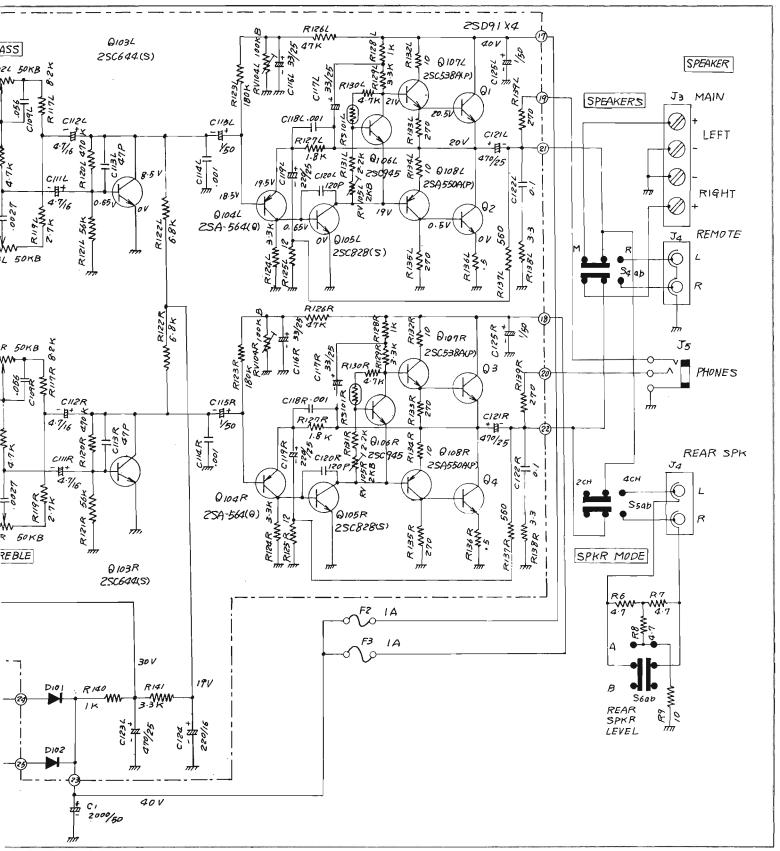
DESCRIPTION DES CIRCUITS (voir schéma)

La realisation de l'amplificateur est soignée, l'ensemble mécanique et circuits bien étudiés et d'accès facile. Les différentes cartes circuit imprimé sont raccordées par la technique du wrapping, solution assurant des contacts de très bonne qualité et de fiabilité élevée. Les circuits utilisés sont classiques, la technique est bonne, la technologie sûre.

Les signaux délivrés par les différentes sources traversent les résistances R3L, R4L, et cellule CRIL disposées à l'entrée afin d'obtenir un niveau d'attaque à peu près constant des circuits préamplificateurs correcteurs. Ceux-ci sont constitués (voie gauche en haut) par les transistors Q101L Q102L. Le premier transistor est monté en émetteur commun, soumis à l'action d'une contre-réaction sur sa base à travers la résistance R105L provenant du pont d'émetteur R107 L -R108L du transistor Q102L.

Nº 1392 - Page 237

Une seconde boucle de contreréaction provenant de Q102L, commutée à travers la galette S1_e réinjecte une partie du signal collecteur sur l'émetteur du transistor Q101L. Selon l'entrée sélectionnée la correction est assurée par la résistance R110L et le condensateur C102L, sur PU magnétique la correction RIAA est assurée par le réseau Page 238 – N° 1392 CR101L et les résistances R111L - R112L.


En sortie du préamplificateur le signal après avoir traversé le condensateur C105L est dirigé simultanément vers la sortie enregistrement en traversant la résistance R109L, et vers l'amplificateur à travers les correcteurs et filtre.

Les signaux passent à travers

la résistance R113L, et peuvent être à cet endroit commutés en mono ou stéréo, puis soumis à l'action de la correction physiologique, assurée par le condensateur C4L la résistance R115L et une fraction du potentiomètre RV101L.

Ce potentiomètre assure la commande de volume et la fonc-

tion de balance. Les signaux sont ensuite soumis à l'action des correcteurs de tonalité. Le montage utilisé est du type Bayendal, constitué par les réseaux R116L - C108L - C109L - R117L et potentiomètre RV102L pour les graves, C110L R119L potentiomètre RV103L pour les aiguës. Les signaux sont ensuite amplifiés par le transistor Q103L.

monte en émetteur commun mis directement à la masse, puis dirigés à travers le condensateur C115L vers la base du transistor d'entrée de l'amplificateur, Q104L. Le potentiomètre ajus table VR104L permet de caler la polarisation de cet étage, et donc de contrôler l'excitation des étages de sortie. Cet étage est soumis à l'action d'une contre-réac-

tion globale continue sur son émetteur, et d'une seconde contreréaction à travers R138L sur cette même électrode. Le couplage est continu sur l'étage suivant, transistor Q105L, par la classique liaison directe collecteur base. Le condensateur C120, assure la stabilité en fonction du réseau de contre-réaction continue R127L - C119L - R125L, et joue le rôle d'un filtre passe bas. Les signaux attaquent ensuite les transistors Q107-Q108 drivers, le transistor Q106L assurant la symétrie de l'excitation, ajustée par le potentiomètre VR105L. Les étages de sortie, transistors Q1 - Q2 sont utilisés en montage quasi complémentaire. Le signal sort à travers le condensateur C121L, le réseau C122L R138L

stabilise le fonctionnement de l'amplificateur à vide, et protège les transistors de sortie. Le signal dirigé vers le casque traverse la résistance R139L, afin de limiter le niveau BF aux bornes de celui-ci.

L'ajustage du niveau de sortie appliqué aux enceintes arrière lorsqu'elles sont en service, est assuré par les résistances série R6 - R7 - R8, que l'on shunte à l'aide de commutateur S6 ab.

L'alimentation comporte un redressement double alternance par les diodes D101 - D102, la cellule de filtrage R140 - C123 est destinée aux circuits préamplificateurs correcteurs RIAA, la cellule R141 - C124 aux étages correcteurs de tonalité. La tension dirigée vers les amplificateurs est filtrée par le condensateur C, les deux fusibles F₂ - F₃ protégeant les deux canaux.

MESURES

Nous avons relevé les caracteristiques dans nos conditions habituelles de mesure. La puissance maximale s'éleve à 2 x 16 W efficaces sur charges de 4 Ω . Dans ces conditions, la distorsion harmonique est de 0,4 % sur les deux voies. La bande passante est de 40 Hz -20 kHz - 3 dB.

L'action des correcteurs de tonalité est de ± 13 dB à 100 Hz, ± 15 dB à 10 kHz. Le correcteur physiologie a une action de + 4 dB à 100 Hz.

La separation des canaux est de 57 dB à 1 kHz, le rapport signal sur bruit de l'entrée pick-up magnétique est de 52 dB, de 72 dB sur les entrées tuner et auxiliaire.

Le niveau du signal sortie

enregistrement est de 0,6 V à 1 kHz, valeur conforme à ce qui est généralement admis.

ECOUTE

Nous avons utilisé d'abord deux enceintes, puis installé une paire d'enceintes arrière. Incontestablement, comme pour de la stéréophonie à 4 canaux, l'auditeur se trouve au milieu de l'orchestre. La meilleure restitution est assurée lorsque l'on met en service le commutateur d'ajustage du niveau enceintes arrière sur la position atténuant les signaux.

Les résultats d'écoute sont bons, les attaques passent bien, la puissance est très largement suffisante pour obtenir un bon niveau sonore même si l'on associe l'amplificateur à des enceintes de bonne qualité mais à faible rendement.

CONCLUSION

Nous sommes en présence d'un amplificateur de puissance moyenne, aux caractéristiques intéressantes. Sa réalisation est très soignée, et cet appareil permet l'écoute d'une pseudo-stéréophonie à 4 canaux qui est pratiquement comparable à certains systèmes d'une complexité et d'un prix tout à fait différents.

RICOLEURS

"DÉCORATION, MEUBLES ET OBJETS ANCIENS"

AU SOMMAIRE DU N° 4/FÉVRIER :

- UN INDISPENSABLE MATÉRIAU : LE CONTREPLAQUÉ.
- EN AVANT-PREMIÈRE DU SALON DU JARDINAGE.
- LES COLLES MODERNES
- Un bricoleur aux U.S.A.
- Fabriquez vous-même un tour de potier.
- Ne soyez plus complexé avec votre jardinet.

En vente chez tous les marchands de journaux - 3 F

"LA REVUE DES BRICOLEURS" 2 à 12, rue de Bellevue - 75019 PARIS - Tél. : 202-58-30

possibilités de bien gagner sa vie

Electricien d'équipement · Monteur depanneur radio T.V · Dessinateur en construction mécanique · Mécanicien automobile · Contremaître · Agent de planning · Technicien frigoriste · Chef magasinier · Diéséliste · Conducteur offset · Esthéticien industriel · Technicien electronicien · Technicien en moteurs · etc.

Ingénieur et sous-ingénieur électricien et électronicien · Chef du personnel · Ingénieur et sous-ingénieur directeur technico-commercial : entreprises industrielles · etc.

CARRIERES COMMERCIALES

Comptable commercial - Représentant - Inspecteur des ventes - Adjoint à la direction administrative - Dessinateur et rédacteur publicitaire - Technicien du commerce extérieur - Technicien du tourisme - Traducteur juridique et technique - Acheleur - Mécanographe - Journaliste - Agent d'assurances - etc

Ingénieur directeur commercial - ingénieur d'affaires - Expert-comptable - Directeur de publicité - Ingénieur du marketing - Directeur administratif - Organisateur commercial et comptable - Chef de comptabilité - Econome - Ingénieur technico-commercial - etc.

Programmeur - Contrôleur de travaux en infor-matique - Opérateur sur ordinateur - Pupitreur Programmeur - Contrôleur de travaux en informatique - Opérateur sur ordinateur - Pupiteur - Codifieur - Chef d'exploilation - Chef oceratrice - Bibliothècaire documentaliste - Perforeus evérifieuse, etc - Langages spécialisés Cobol - Fortran, PL 1, etc. - Applications de l'informatique en médecine - etc. - Applications de Directeur de l'informatique - Concepteur technico-commercial en informatique - Directeur de l'informatique - Concepteur chef de projet - Ingénieur en organisation et informatique - Ingénieur contrôleur de geation - Ingénieur en organisation - etc.

Assistante-scrétaire de médecin - Décoratrice-ensembler - Programmeur - Esthéticienne - Etalagiste - Dessinatrice publicitaire et de mode - Secrétaire commerciale - Laborantine médicale - Agent de renseignements touristiques - Journa iste - Attachée de presse - Auxiliaire de jardins d'enfants - etc.

Secrétaire de direction - Technicienne en analyses biologiques - Econome - Technicienne du tourisme - Diététicienne - Styllste - Chel étalagiste - Chel hôtesse - Secrétaire d'architecte, d'ingénieur - Chef des relations publiques - etc.

Décorateur-ensembler - Dessinateur publicitaire - Romancier - Photographe artistique, publicitaire et de mode - Dessinateur illustrateur et de mode - Dessinateur illustrateur et de bandes dessinates - Chroniqueur sportif - Dessinateur paysagiste - Decorateur de magains et stands - Journaliste - Décorateur cinéma T V - Disquaire - Maquettiste - etc cinéma T V - Disquaire - Maquettiste - etc stands - Decorateur de manuscrits - Journaliste d'édition - Lecteur de manuscrits - Journaliste économique - Critique de cinéma - Styliste de meubles - etc.

CARRIERES

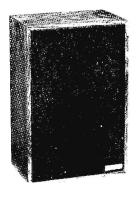
Chef de chantier bâtiment et Travaux Publics -Dessinateur en bâtiment et Travaux Publics -Métreur en maconnerie, en menuiserie - Tech-nicien du bâtiment - Electricien d'équipement

nicien du bâtiment - Electricien d'équipement - Technicien en chairlâge - Opérateur topographe - Carreleur mosaiste - Métreur en travaux publics - Technicien en ventilation - etc armé - Commis d'architecte - Entrepreneur de travaux bâtiment - Expert immobilier - Promoteur de construction - Ingénieur directeur lechnico-commercial : bâtiment - etc.

Aide-chimiste - Laborantin et aide laborantin médical - Technicien en pétrochimie, en protection des métaux - Conducteur d'appareils en industries chimiques - Technicien de transformation des matières plastiques - Technicien de fabrication des papiers, des penitures - Chimiste - Blochimisté - Physicien - Chimiste analyste des boues de torage - Chimiste métallurgiste - Chimiste contrôleur de peinture - Chimiste papetier - Chimiste de raffinage du pétrole - Ingénieur directeur technico-commercial : chimie appliquée - etc.

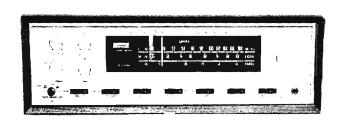
Sous-ingénieur et technicien agricole - Dessinateur et technicien agricole - Dessinateur et entrepreneur paysagiste - Sous-ingénieur et technicien en agronomie tropicale - Eleveur - Chef de cultures - Mécanicien de machines agricoles - Garde-chasse - Aviculteur - Comptable agricole - Sylviculteur - Horticulteur - Technicien en laiteire - etc.

Directeur d'exploitation - Consellier de gestion - Directeur de coopérative - Directeur technique de lailerie, de sucrerie - Directeur technique en aliments pour animaux - Ingénieur directeur technique en alimentares - etc.


Yous pourrez d'ores et déjà envisager l'avenir avec confiance et optimisme, si vous choisissez votre carrière parmi les 540 professions sélectionnées à votre intention par UNIECO (Union Internationale d'Ecoles par Correspondance), organisme privé d'enseignement à distance.

PREPARATION EGALEMENT A TOUS LES EXAMENS OFFICIELS: CAP-BP-BT-BTS Retournez-nous le bon à découper ci-dessous, vous recevier gratuitement et sans autrein engagement, notre, documentation complète et le guide officiel UNIECO (de plus de 200 pages) sur les carrières envisagées

BON GR	ATUITEMENT
notre documentation complète et l	e guide officiel UNIECO sur les carrières ∰). (pas de visite a domicile) (ecure en majuscules)
☐ 110 CARRIÈRES INDUSTRIELLES ☐ 70 CARRIERES COMMERCIALES	NOM
☐ 30 CARRIÈRES INFORMATIQUES ☐ 100 CARRIÈRES FEMININES	ADRESSE
☐ 60 CARRIÈRES ARTISTIQUES ☐ 50 CARRIÈRES DU BATIMENT	
© 60 CARRIÈRES DE LA CHIMIE © 60 CARRIÈRES AGRICOLES	οΪ
	ue de Neufchâtel 76041 Rouen Cedex


🖿 🖿 Pour la Belgique : 21-26, quai de Longdoz - 4000 Liège. 🖿 🖿

Page 240 - Nº 1392

CHAÎNES PIZON-TANAKA

A Chaîne Tanaka 1. — Cette chaîne comprend le tuner amplificateur Tanaka, la platine Garrard SP 25. Deux enceintes Erelson TS 5.

Le tuner-amplificateur Tanaka. - Tuner-ampli couplé. Entièrement transistorisé (transistors au silicium et à effet de champ). Amplificateur stéréophonique 2 × 20 W. Tuner PO-GO-FM avec décodeur automatique incorporé pour la réception de la radio stéréo. Double réglage de tonalité. Rattrapage automatique commuta-ble en FM (AFC). Voyant stéréo FM. Antenne ferrite incorporée pour PO et GO. Prises pour pla tine tourne-disque et magnétophone. Sorties pour haut-parleurs adaptées aux enceintes acoustiques de 4 et 8 Ω. Luxueuse ébénisterie noyer. Dimensions : $50 \times 12 \times 30$.

La platine Garrard SP 25. — Tourne-disque 3 vitesses : 33, 45 et 78 tours. Moteur asynchrone tétrapolaire. Bras de lecture aluminium à système à contrepoids, tête amovible à glissière. Mécanisme de commande à distance du bras. Réglage de la force d'application. Correcteur de poussée latérale. Pose automatique du bras. Pla-

teau de 26,7 cm de diamètre. Pleurage et scintillement inférieurs à 0,14 %. Vibration inférieure à – 46 dB en 1,4 cm/s à 100 Hz. Alimentation secteur 110/220 V. Dimensions : 383 × 317 mm.

L'enceinte acoustique Erelson TS5. — Dimensions : P 19 x 1 29 x H 43 cm. Présentation noyer de Californie, face tissu. Impédance 8 Ω. Haut-parleur 18 cm pour la version TS4, 18 cm + tweeter avec filtre pour la version TS5. Principe : Baffle clos, densité élevée des matériaux utilisés.

B - Chaîne Tanaka 2. — Cette chaîne comprend : Le tuner-amplificateur Tanaka, une platine Lenco B55, 2 enceintes Eole 150.

Le tuner-amplificateur Tanaka (voir chaîne précédente).

La platine Lenco B55. — Dimensions : Platine de montage en acier de 2 mm, 375 x 300 mm. Diamètre du plateau 300 mm. Poids : plateau en acier de 2 mm, 1,4 kg. Total du tourne-disque complet 5,5 kg. Moteur : 4 pôles à axe conique. Raccordement au réseau 117 V-220 V/50 ou 60 Hz. Puissance absorbée sous 220 V, 50 Hz,

15 VA. Bras de lecture : La force d'appui est ajustable. Force d'appui minimale possible 0,5 g. Coquilles porte-cartouches interchangeables en métal léger pour tous types de cellules. Longueur du bras 238 mm. Caractéristiques générales : Vitesses ajustables de manière continue entre 30 et 86 tr/mn. Encoches repères pour 4 vitesses fixes, 16 2/3, 33 1/3, 45 et 78 tr/mn. Pleurage et scintillation tels que mesurés ± 1,8 ‰. Pleurage et scintillation évalués selon normes DIN 45507 ± 1,2 %. Rumble (0 dB-100 Hz = 1,4 cm/s), - 37 dB. Rapport signal/bruit (référence 6 mV), 44 dB. Variation de la vitesse pour une variation de la tension du secteur de \pm 10 %, \pm 2,5, - 3 %. Erreur de lecture tangentielle pour diamètres de 120- $20 \text{ mm}, \pm 0.8^{\circ}$.

L'enceinte acoustique Scientelec Eole 150. — Système à 2 voies (2 H.P.). I haut-parleur 21 cm, fréquence de résonance 35 Hz (champ dans l'entrefer 10 000 G). I tweeter (23 kHz + 3 dB). Bande passante 30 Hz à 20 kHz. Recommandée pour ampli de 10 à 30 W par canal. Impédance 4-8 \(\Omega \). Dimensions 423 \times 293 \times 240 mm. Volume interne 19 litres. Poids 10 kg.

C — Chaîne Tanaka 3. — Cette chaîne comprend : un tuner amplificateur Tanaka, une platine Connoisseur BD2, 2 enceintes Scientelec Eole 180.

Le tuner amplificateur Tanaka (voir chaîne A).

La platine Connoisseur BD2.

— Elle est équipée d'un moteur synchrone 2 vitesses. Plateau 25 cm. Poids 1,2 kg. Bras: pivot gyroscopique avec capot admettant toutes cellules. Livré sur socle avec bras (sans cellule), pèse-bras et couvercle de plexiglas. Dimensions L 390, P. 342, H. 120 mm (hors tout, bras compris).

L'enceinte acoustique Eole 180. — Système à 2 voies (2 H.P.) 1 haut-parleur 21 cm, fréquence de résonance 30 Hz (champ dans l'entrefer 15 000 G). 1 tweeter (23 kHz + 3 dB). Bande passante 25 Hz à 20 kHz. Recommandée pour ampli de 15 à 35 W par canal. Impédance 4-8 Ω. Dimensions 423 × 293 × 240. Volume interne 19 litres. Poids 10 kg.

Fréquence de coupure : 8 000 Hz, coffret : noyer, dimensions : $60 \times 39 \times 28,5$ cm. Poids : 16 kg.

CHAÎNES MARANTZ

La chaîne Marantz 2230. - néoprène rectifié à ± 5 microns. Cette chaîne comprend : un tuneramplificateur Marantz 2230, une platine ERA 555, 2 enceintes Siare Fugue 50.

Le tuner-amplificateur Marantz 2230. - Caractéristiques : accord par volant « Gyrotouch ». Silencieux interstations. Sortie pour adaptateur quadraphonique. Filtres: passe-haut et passe-bas. Contrôles séparés du grave, médium et aigu. Prises frontales pour magnétophone et casque. Sélection de 2 groupes de hautparleurs. Sensibilité FM (IHF) 2,3 µV. Rapport signal/bruit : 63 dB à 50 µV. Séparation stéréo 40 dB. Puissance 2 x 30 W eff. de 30 Hz à 20 kHz. Distorsion totale: moins de 0.5 %. Dimensions $43 \times 13 \times 35,5$ cm. Poids 14,5 kg. Accessoire ébénisterie noyer WC22.

La platine ERA 555. – La platine 555 est équipée d'un système original de suspension par contre-platine intérieure suspendue et d'un bras à pivot fictif. Grâce à cette technique, l'ensemble de lecture est isolé de tout phénomène de vibration qui empâte le grave.

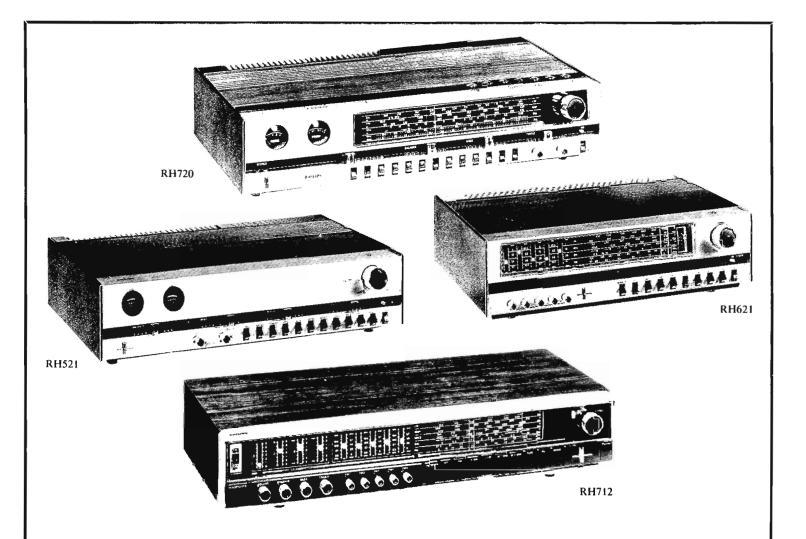
Double moteur synchrone 48 pôles. Plateau lourd 30 cm. Entraînement par courroie en Fluctuations totales en 33 t < 0,04 %. Rumble en 33 t ou < 73 dB (DIN). Vitesses 33 45 t. Bras à pivot fictif K3. Suspension par contre-platine intérieure suspendue, compensateur de poussée latérale. Lèvebras. Dimensions (L x P x H) $41 \times 31 \times 13$.

L'enceinte Siare Fugue 50. -Puissance nominale 35 W, puissance crête 40 W. Impédance 4 à 8 Ω . Bande passante 20 à 25 000 Hz.

La chaîne Marantz 2270. -Cette chaîne comprend le tuneramplificateur Marantz 2270. La platine ERA 666 avec cellule elliptique ADC 220XE. 2 enceintes acoustiques Marantz Impérial 6.

Le tuner-amplificateur Marantz 2270. – Accord par volant « Gyrotouch ». Indicateurs de champ, d'accord exact et d'orientation d'antenne. Sortie pour adaptateur quadraphonique. Contrôles séparés du grave, médium et aigu. Filtres : passe-haut et passe-bas. Prises frontales pour magnétophone et casque. Sélection de 2 groupes de hautparleurs. Sensibilité FM (IHF): ceintes acoustiques 1.9 uV. Rapport signal/bruit: Research AR4 Pin.

67 dB à 50 µV. Séparation stéréo : 40 dB. Puissance : 2 x 70 W eff. de 20 Hz à 20 kHz. Distorsion totale : moins de 0.3 %. Dimensions : 43×13 × 35,5 cm. Poids : 16 kg. Accessoire : ébénisterie noyer WC 22.


La platine ERA 666. - Platine de lecture de disques deux vitesses 33 et 45 tours. Isolation assurée par une contre-platine intérieure suspendue. Double moteur synchrone 48 pôles. Plateau lourd 30 cm. Entraînement par courroie en néoprène rectifié à \pm 5 μ . Fluctuations totales en 33 tours < 0,04 %. Rumble en 33 tours < - 73 dB (DIN). Vitesses 33 et 45 tours. Bras à pivot fictif K5. Suspension par contre-platine interieure suspendue. Compensateur de poussée latérale. Lève-bras. Dimensions 42 × 33 × 13 cm. Coffret en nover d'Amérique avec couvercle en altuglas. L'appareil est équipé d'une cellule élliptique ADC

La chaîne Marantz 2245. -Cette chaîne comprend un tuner amplificateur Marantz 2245, une platine Thorens TD150, 2 enacoustiques Acoustic

Le tuner amplificateur Marantz 2245. - Puissance 2 x 45 W. Distorsion harmonique < 0,3 % de 20 Hz à 20 kHz. Intermodulation < 0,3 %. Courbes de réponse à 1 W : 15 Hz à 40 kHz ± 1 dB. Sensibilité des entrées : PU : 1,8 mV, entrée haut niveau: 180 mV. Sortie pour enregistreur: 0,775 V/ 47 kΩ. Partie récepteur : rapport signal/bruit FM: 57 dB à 10 µV. Séparation stéréo : 40 dB à I kHz. Distorsion harmonique: stéréo 0,4 %. Sensibilité AM: 25 μ V. Dimensions : 42,5 \times $12,71 \times 36$ cm. Poids : 14,5 kg.

La platine Thorens TD150. -2 vitesses : 33 et 45 tours. Moteur synchrone 16 pôles. Plateau de 300 mm de diamètre et de 3,2 kg. Régularité de vitesse + 0.09 selon DIN 45508. Niveau de bruit : non pondéré 43 dB. Longueur du bras 230 mm. Dimensions 394×125×325 mm. Poids 6,7 kg.

L'enceinte acoustique AR4 Pin. - Puissance 15 W eff. Impédance 8 Ω. Equipement : haut-parleur grave à suspension acoustique de 203 mm. Tweeter à cône, à large dispersion de 63 mm de diamètre. Réglage de niveau du tweeter. Dimensions $254 \times 280 \times 230$ mm. Poids 8,4 kg.


NOUVEAUTÉS PHILIPS

L'amplificateur RH521. Puissance de sortie : 2 x 30 W efficaces. Distorsion : < 1 % à la puissance nominale ; < 0,1 % pour 2 × 20 W. Courbe de réponse : linéaire de 10 à 40 000 Hz $\dot{a} + 0.5, -3 \text{ dB. Rapport signal/}$ bruit: - 90 dB à 1000 Hz. Diaphonie: - 45 dB à 1 000 Hz: - 40 dB entre 20 et 10 000 Hz. Contrôles de tonalité : graves à 50 Hz : + 14 à - 14 dB; aiguës \dot{a} 10 000 Hz : + 14 \dot{a} 16 dB. Contrôle de balance : de 0 à l'infini. Filtre rumble : commutable. Contrôle présence : de $+ 6 dB \dot{a} - 6 dB \dot{a} 2000 Hz.$ Sensibilité pour 2 x 30 W : Pick up magnétique : 2 mV. 47 kΩ. Magnétophone et monitor: 250 mV-100 kΩ. Autres entrées : 100 mV. Impédance de charge: 4 (2. Casque: 8 et 600 Ω . Facteur d'amortissement : $> 20 \text{ à 4 } \Omega$. Alimentation: 110 à 240 V, alternatif 50 et 60 Hz. Consommation: 125 W pour puissance maximale. Dimensions : $470 \times 280 \times 117$ mm. Présentation : noyer et aluminium.

Le tuner RH621. - Gammes de fréquences : GO 150 à 350 kHz; PO 520 à 1 605 kHz; OC 5,95 à 17,9 MHz; FM 87,5 à 104 MHz. Sélectivité : en AM : 100/45 à 9 kHz; en FM: 200 à 300 kHz soit 46 dB. Fréquence intermédiaire : AM : 452 kHz; FM: 10,7 MHz. Sensibilité: en FM : 2 μ V pour 26 dB, signal/bruit, déviation 40 kHz, en AM : 120 μ V pour 26 dB signal/bruit. Contrôle AFC : 1 MHz en FM. Distorsion FM: < 1 % pour une déviation en fréquence 75 kHz. Diaphonie : 35 dB à 1000 Hz. Réponse FM: 20 à 15 000 Hz à -3 dB. Sortie signal AF: en AM: 350 mV maximum; en FM: 0,6 V. Impédance de sortie : 10 000 Ω. Alimentation: 110 à 240 V, alternatif 50 et 60 Hz. Consommation: 9 W. Dimensions: 420 x 280 x 117 mm. Présentation : noyer et aluminium.

Le tuner amplificateur RH720. - Partie radio : Gammes de fréquences: GO: 150 à 350 kHz; PO: 520 à 1605 kHz; OC: 5,95 à 17,9 MHz; FM: 87,5 à 104 MHz. Sensibilité : en FM : 2,0 µV pour 26 dB signal/bruit, déviation 40 kHz; en AM: 150 µV pour 26 dB signal/bruit. Distorsion FM : < 1 % pour une déviation en fréquence de 75 kHz.- Partie amplificateur: Puissance de sortie : sur 4 Ω , 2 x 30 W efficaces. Distorsion: < 1 % à la puissance nominale. Courbe de réponse : linéaire de 15 à 40 000 Hz à + 0,5, - 3 dB. Rapport signal/bruit : > 90 dB à 1000 Hz. Contrôles de tonalité: graves à 50 Hz: + 14 à - 14 dB; aíguës à 10 000 Hz: + 14 à - 16 dB. Sensibilité pour 2 x 30 W : Pick-up magnétique 2.0 mV, 50 k(2. Magnetophone et monitor : 250 mV, 100 kΩ. Microphone : I mV, $2 \text{ k}\Omega$. Impédance de charge : valeur nominale: 4 (2. Prise casque 8 et 600 Ω . Dimensions : 540 \times 280 x 117 mm. Présentation : noyer et aluminium.

Le tuner amplificateur RH712. Partie radio : Gammes de fréquences: GO: 150 à 340 kHz; PO 1:520 à 1420 kHz; PO 2: 1405 à 1605 kHz; OC: 5,95 à 9,8 MHz; FM : 87,5 à 105 MHz.. Sensibilité: En FM: 1,3 uV pour 26 dB signal/bruit, deviation 40 kHz. En AM: 90 µV pour 26 dB signal/bruit. Distorsion FM : < 1,5 % pour une déviation en fréquence de 75 kHz. Basse fréquence : Puissance de sortie : sur 4 Ω , 2×15 W efficaces, 2×20 W musique. Distorsion : < 1 % à la puissance nominale. Courbe de réponse : linéaire de 20 à 20 000 Hz à ± 1 dB. Rapport signal/bruit : > - 50 dB å 1 000 Hz. Contrôles de tonalité : Sensibilité pour 2 x 15 W : pick-up magnetique 1,15 mV, 50 kΩ. Microphone : 0,5 mV, 2 kΩ. Autres entrées : 270 mV. 500 kΩ. Impédance de charge : 4 à 8 Ω . Valeur nominale : 4 Ω . Casque : 600Ω . Dimensions : 564 × 215 × 111 mm. Présentation: aluminium et coffret recouvert nover.

PHOTO-CINE

LA MISE AU POINT AUTOMATIQUE DES CAMÉRAS DE CINÉMA

ES cameras cinematogra phiques, de même, d'ailleurs, que les appareils photographiques sont désormais munis très souvent de dispositifs automatiques de contrôle du temps d'exposition, c'est-à-dire essentiellement de l'ouverture du diaphragme, pour une cadence de prise de vue déterminée et une sensibilité du film connue.

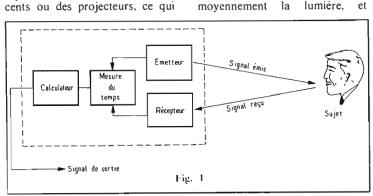
Mais, on commence à étudier la possibilité de réalisation pratique de systèmes de mise au point automatique de l'objectif, dont l'idée est déjà ancienne, et remonte à la guerre de 1940-1945. Le principe est adopté, d'ailleurs, déjà pour assurer le contrôle continu de la mise au point sur les projecteurs de diapositives, afin de compenser les déformations dues à l'échauffement ine vitable du film.

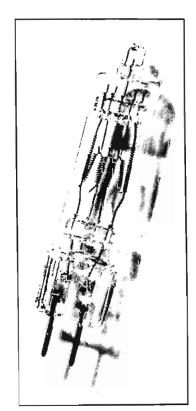
Nous avons déjà signalé dans ce domaine le système proposé par Bolex et appliqué sur une caméra 16 mm. Ce dispositif est actuellement réalisé; son fonctionnement est basé sur la mesure du temps de parcours d'une série d'impulsions lumineuses que l'on peut comparer aux impulsions transmises par un radar pour déterminer la position et l'éloi gnement des obstacles.

Dans ce but, des signaux infra rouges très brefs sont émis vers le sujet dont on veut mesurer l'éloignement; ils sont en partie réfléchis par lui, et reviennent vers Page 250 – N° 1392 un élément récepteur, qui les enregistre. Malgre la vitesse de propagation très élevée de la lumière, de 300 000 km/s, il y a, suivant le principe du radar, entre l'instant d'émission et celui de réception du signal, un lèger décalage qui augmente proportionnellement avec l'éloignement du sujet; il est utilisé pour déterminer électroniquement la distance que l'on veut mesurer et, par suite, pour assurer la mise au point de l'objectif (Fig. 1).

L'élément émetteur comporte une diode laser gallicem-arsenic dont la puissance de sortie est plus élevée que celle des diodes habituelles émettant des rayons infrarouges. Ce fait assure un fonctionnement très fiable de l'appareil; l'émission et la réception des rayons de commande ne peuvent ainsi être perturbés, ni par la lumière artificielle, ni par la lumière du jour, par les rayons solaires, des tubes fluorescents ou des projecteurs, ce qui

risque de se produire pour les systèmes de mesure à rayonnement continu.


La mesure est effectuée par impulsions successives à la cadence réduite de quelques impulsions par seconde, de sorte qu'il n'y a pas de risque d'interférence entre deux caméras de ce type employées simultanément.


L'amplitude du signal de sortie fourni par l'appareil, et qui est proportionnelle à la distance à mesurer, peut être transmise à un instrument d'affichage, du type conventionnel ou digital, ou bien utilisée directement pour le réglage de la distance, en agissant sur l'objectif de la caméra équipé d'un dispositif de servo-commande (Fig. 2).

La portée de la mesure est de 0,5 à 10 m pour un sujet réflé chissant peu la lumière, avec un coefficient de réflexion d'environ 1 %; elle s'étend de 0,5 à 15 m, pour un sujet réfléchissant moyennement la lumière, et

atteint 0,5 à 20 m, pour un sujet réflèchissant bien la lumière.

La précision de la mesure est de l'ordre de \pm 10 cm \pm 2 x 10 2 R, R étant la distance du sujet en metres. Il y a ainsi une

erreur possible de ± 10 cm, à laquelle s'ajoute une erreur de 2 %, qui s'accroît en fonction de la distance à mesurer.

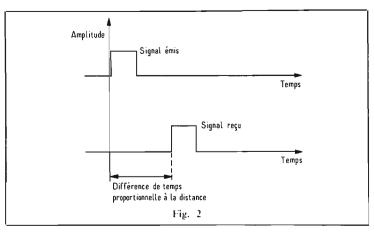
La vitesse de réaction du dispositif est d'environ 5 m/seconde; ainsi lorsque la distance à mesurer change brusquement de 10 m environ, il faut deux secondes pour obtenir à nouveau une mesure precise. Le signal de sortie a évidemment une tension proportionnelle à l'éloignement du sujet; elle est de 100 mV à 1 m; la tension d'alimentation est de 7 à 14 V, et la consommation de courant ne dépasse pas 400 mA.

NOUVELLES LAMPES DE PROJECTION ET DE PRISE DE VUES

Une série de nouvelles lampes halogènes à filament de tungstène et de lampes à décharge pour la projection et la prise de vues ont été mises au point par **Sylvania**. Ainsi, une lampe de 200 W pour projecteurs de dispositives, alimentée directement par secteur de 220 V, assure une meilleure brillance, et permet de réduire le poids du projecteur, par suite de la suppression d'un transformateur.

Cette lampe équipe, en particulier, les nouveaux projecteurs miniatures Kodak Retinamat destines à la projection des diapositives de format très réduit obtenus avec les appareils Kodak-Pocket-Instamatic (Fig. 3 et 3 bis).

Instamatic (Fig. 3 et 3 bis).


Une lampe de projection de longue durée 25 W a, de même, été spécialement conçue pour les projecteurs de diapositives, qui doivent être en service plusieurs heures par jour; sa durée de service moyenne est de 1 000 h, et le rapport brillance/coût d'utilisation est très satisfaisant.

L'apparition sur le marché de films de cinéma de plus en plus rapides a conduit aussi à la mise au point de deux nouveaux modèles de lampes 500 W pour projecteurs de prise de vues, utilisables sur des appareils d'èclairage cinématographique de petit format tels que les « Compact Sun-Gun ».

UNE LOUPE MAGNETIQUE

Les enregistrements effectués sur bande magnétique sont invisibles, en principe et, pour obser ver les caractéristiques des pistes, il faut habituellement avoir re cours à l'action d'une poudre magnétique à sec ou en dispersion dans des liquides, qui révèle, en quelque sorte, l'enregistrement latent, mais la méthode est évidemment plus ou moins complexe et difficile à appliquer.

Une loupe magnétique réalisée par 3 M et appelée Plastiform vient d'être réalisée et son application paraît offrir un grand

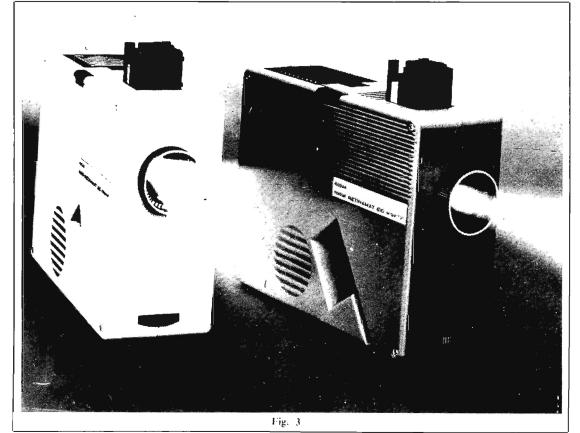
intérêt. Il suffit, en effet, de l'appliquer directement sur la bande magnétique enregistrée, sans aucun traitement particulier. Les signaux enregistrés apparaissent alors de manière très nette et bien visible; on peut vérifier l'alignement des têtes, l'emplacement des pistes, l'intervalle entre les différentes petites masses magnétiques, la définition des impulsions, tous les défauts d'inscription, les zones de « dropouts », c'est-à-dire d'affaiblissement (Fig. 4).

Cette loupe magnétique permet ainsi de déterminer également les causes d'un fonctionnement défectueux à l'enregistrement ou à la lecture. Si l'enregistrement est effectué normalement l'inscription est très visible sur la loupe magnétique et, si le système de reproduction fonctionne correctement, les signaux révélés par elle doivent pouvoir assurer une

audition de qualité, ou la reproduction d'images de bonne définition dans les magnétoscopes

Cette loupe a un diamètre qui ne dépasse pas 3,2 cm; elle contient simplement des particules magnétiques en suspension dans une solution. Quand elle est placée dans une bande magnétique, les particules s'agglomèrent sous l'action du champ magnétique, et forment ainsi une image claire et nette de l'enregistrement.

Ce dispositif, simple et pra tique, peut également être employé pour synchroniser la piste-son d'un film à piste magnétique, ou d'un magnétoscope, pour examiner le spectre d'un enregistrement musical, et même pour contrôler la magnétisation accidentelle ou normale, à la suite d'un long usage, des têtes et des guides et, en général, des parties métalliques d'un enre gistreur.


LE FONCTIONNEMENT DES MAGICUBES

Les Magicubes contiennent quatre petites ampoules éclair ayant la particularité de pouvoir être « mises à feu » sans l'intervention d'un courant électrique fourni par une pile ou un accumulateur, mais simplement par un effet mécanique, ce qui constitue une simplification et diminue les risques de non-fonctionnement par suite de défauts de contact, de corrosion ou d'encrassement. La fiabilité de ces flashes-cubes à quatre éléments mis à feu mécaniquement atteint 99,7%.

Chaque ampoule, dans ces Magicubes à quatre éléments, est, en quelque sorte, « allumée » par un système à ressort de torsion propre intégré, monte à la base du tube, ce qui assure le fonctionnement sûr du dispositif.

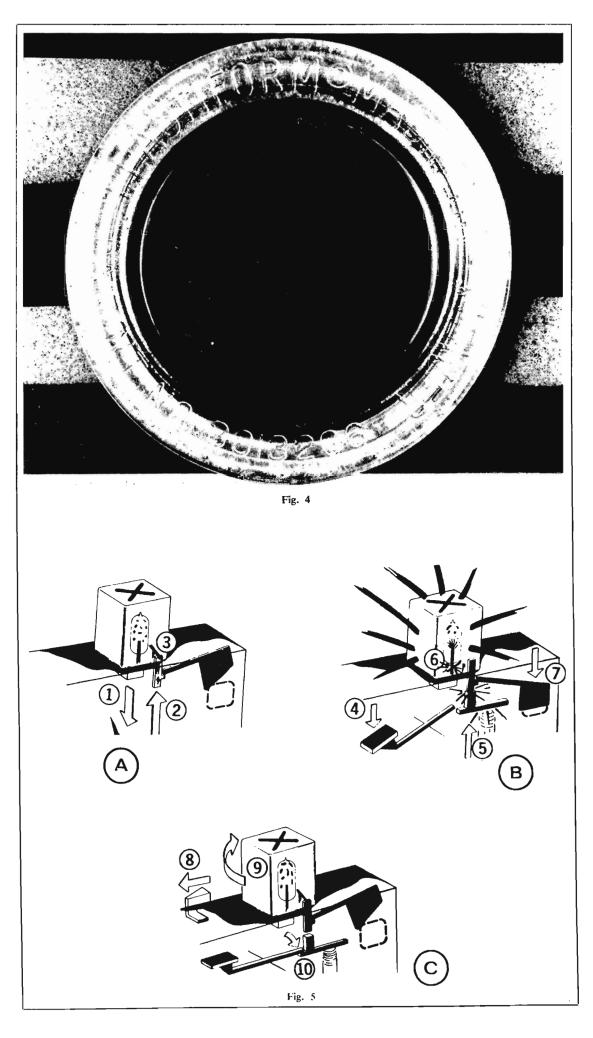
Un côté d'un ressort de torsion à la base de la lampe constitue un verrouillage qui fait apparaître un signal dans le viseur pour indiquer à l'opérateur l'état accidentel défectueux d'une ampoule. L'autre côté du ressort est un système de frappe; lorsqu'il est armé ce système est maintenu par le verrouillage.

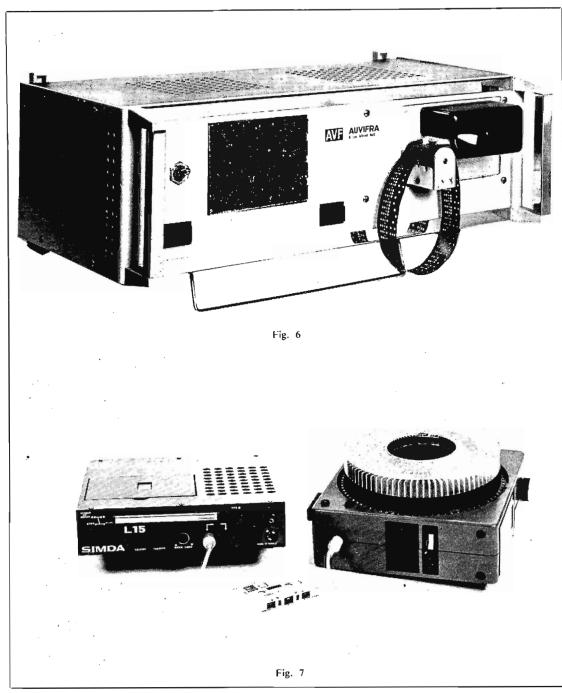
Toutes les forces nécessaires pour assurer la mise à feu de l'ampoule sont fournies par le ressort, de sorte que l'énergie nécessaire pour assurer la production de l'éclair ne diminue pas d'une façon notable au fur et à mesure du stockage.

Nº 1392 - Page 251

La substance qui assure la mise à feu de l'ampoule-éclair est semblable à celle employée aux extrémités des fils de liaison dans une lampe allumée électriquement.

Placée dans un tube métallique, qui est hermétiquement scellé à la lampe, elle est mise à feu quand le ressort de torsion frappe le tube de métal, d'une manière analogue à la poudre contenue dans une cartouche frappée par la pointe de mise à feu d'une capsule de fusil ou de revolver et, à son tour, ce phénomène produit le déclenchement de l'éclair du zirconium dans la lampe-flash.


La figure 5 montre comment se produit ce sonctionnement. Lorsque le Magicube est placé dans la caméra, une tige-sonde vient s'ensoncer automatiquement dans le cube et s'appuie sur le ressort de torsion 3. A ce moment, une lampe neuve ou en bon état est prête à sonctionner; s'il n'en est pas ainsi il apparaît généralement un signal d'alarme dans le viseur indiquant que la lampe est en mauvais état, et ne peut sonctionner et doit, par suite, être remplacée.


Lorsqu'on appuie sur le déclencheur 4 de l'obturateur le levier de verrouillage libère la pièce 5, et actionne la tige-sonde, qui vient libérer le ressort 6 de la lampe éclair. Le ressort frappe le tube de métal, enflamme la substance qui, à son tour, met à feu le zirconium. Lorsque le ressort s'est ainsi déplacé, un signal d'alarme vient apparaître dans le viseur en 7.

Lorsque le film est entraîne pour assurer la prise de vue suivante en 8, le cube tourne dans le sens des aiguilles d'une montre d'une division en 9. Simultanément, la tige-sonde s'enfonce de nouveau dans le cube, de façon à contrôler si la lampe est en position et peut être de nouveau utilisée. En enroulant le film, on arme l'obturateur et on replace normalement le levier d'arme ment 10.

UN PROGRAMMATEUR AUDIOVISUEL

La projection des diapositives multiples simultanée pour former des « murs d'images » est très utilisée actuellement pour de nombreuses applications, aussi bien artistiques qu'industrielles. Un nouveau programmateur à 16 canaux commandé par une bande perforée a été réalisé récemment par Auvifra; il permet de constituer facilement, et pour un prix relativement modique, un diaporama comportant 16 images simultanées (Fig. 6). Page 252 – N° 1392

Cet appareil est utilisable avec n'importe quel projecteur muni d'un système d'avance automatique, la tête de lecture a un fonctionnement très fiable, et permet d'effectuer un grand nombre de projections sans surveillance. Le codage est simplement réalisé par perforations; l'appareil fournit des impulsions de commande qui sont lues sur une bande magnétique.

LE FONDU ENCHAINE AUTOMATIQUE SUR TROIS ECRANS

Le procédé du fondu enchaîné permet d'obtenir des effets remarquables de projection de diapositives en utilisant deux ou plusieurs projecteurs identiques commandés par un appareil programmateur unique. Il est désormais possible de réaliser de véritables spectacles audiovisuels, en employant également un magnétophone synchronisé, qui peut être monophonique, stéréophonique, ou même quadriphonique.

Un groupe de commande de ce genre du type ED3000 réalisé par Sinida T.A.V. offre sous ce rapport des possibilités remarquables en combinaison avec des appareils de projection Kodak Carousel S.A.V., mais avec adaptation possible sur projecteurs Agfa-Leitz, Prestinox, Hanimex, Braun, Philips, Kindermann, etc. (Fig. 7).

Cet appareil permet d'effectuer des fondus lents, des flashs, des retours en arrière, des scintillements, des variations de niveaux, grâce au procédé de modulation en fréquence, sans repérage des phases du secteur, et sans nécessité d'un réglage de niveau car il comporte un contrôle automatique de gain incorporé.

Il suffit de commander l'appareil une fois à la main, en écoutant le son enregistré sur la première piste de la bande d'un magnétophone, pour que s'enregistrent sur la deuxième piste tous les effets de fondu réalisés à la main : les fondus lents ou rapides, les apparitions ou disparitions de titres sur un même fond, l'arrêt sur deux images, les scintillements, etc.

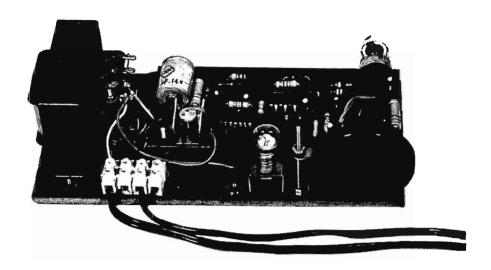
Tous ces effets sont ensuite reproduits automatiquement en relisant la bande, et même les reprises pour corrections deviennent possibles à tout moment, sans risque de décalages. Grâce à la modulation en fréquence, les bandes synchronisées avec cet appareil peuvent être reproduites, tant en ce qui concerne les sons que le synchronisme, par simple copie d'un magnétophone stéréophonique à un autre; les appareils euxmêmes, les systèmes de télécommande, les accessoires et les programmes sont interchangeables, ce qui permet un échange facile des programmes audiovisuels entre des amis ou des collègues, ou des photo-clubs.

Différents types de lecteurs ou de lecteurs-enregistreurs pour la bande en bobines, en cartouches sans fin, ou en minicassettes sont prévus pour assurer l'exploitation automatique des programmes y compris les resynchronisations en fin de programme, l'arrêt avec les lampes éteintes, la remise en route automatique ou par télécommande.

Le montage est équipé avec 12 transistors au silicium, 14 cir cuits intégrés, 2 transistors à effet de champ, 31 diodes et 2 triacs; son poids est inférieur à 3 kg, et son transport est facile dans une mallette de projecteur. Il comporte comme dispositif de commande un inverseur pour la commande manuelle et l'enregistrement, de façon à assurer directement ou à distance sa commande, ou au moyen du magnétophone.

Un autre inverseur empêche la mise à zéro automatique, lorsqu'elle n'est pas désirée; enfin, un accessoire interdit une nouvelle projection après la remise à zéro, permet de faire démarrer l'audiovisuel à distance instantanément, par simple pression sur un bouton.

Deux prises normalisées disposées à la partie inférieure à l'arrière assurent le raccordement des triacs des projecteurs gauche et droit; une commande à curseur rectiligne permet de doser tous les effets de fondus à volonté. Le changement de diapositives est obtenu en forçant les curseurs à bout de course.


En diffusant le son de la piste 1, le magnétophone enregistre en piste 2 la modulation en fréquence des fondus réalisés manuellement et en lecture stéréo les fondus sont pilotés automatiquement par le magnétophone.

Pour assurer la resynchronisation automatique permettant la marche continue ou sans surveillance pendant un cycle de fonctionnement, un cordon reliè à une sortie et à la télécommande du magnétophone ou d'un lecteur permet d'arrêter le défilement de la bande et de la faire démarrer à nouveau, des la fin de la remise à zéro automatique des magasins.

P. HEMARDINOUER

(à suivre)

UN GADGET ÉLECTRONIQUE

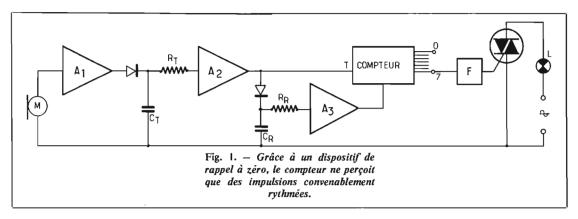
POUR ALLUMER FRAPPER SEPT FOIS

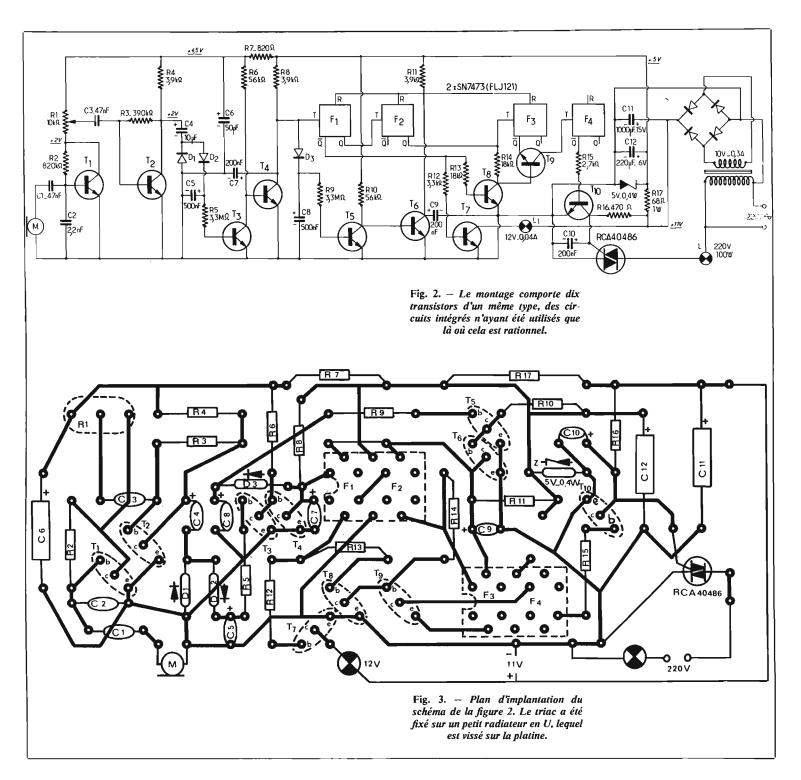
ANS un conte oriental, il est question d'un maître qui, pour se procurer de l'éclairage, frappe sept fois dans les mains, et alors, des esclaves lui apportent des flambeaux. De nos jours, nous avons certes des moyens d'éclairage plus commodes, mais on n'arrive pas à les mettre en service en frappant simplement dans les mains. A moins qu'on ne réalise le montage décrit ci-dessous, lequel peut d'ailleurs, accessoirement, servir de modèle de démonstration pour illustrer la notion « comptage binaire ».

PRINCIPE DE FONCTIONNEMENT

Les sons de claquement sont captés par un microphone qu'on a avantage à choisir peu sensible aux fréquences basses, de façon qu'il ne capte effectivement que les bruits qui lui sont destinés. On peut ainsi utiliser une capsule d'écouteur d'une résistance de l'ordre de 1 kΩ en continu. Excité par un bruit impulsionnel, un tel microphone produit un train d'oscillations amorties. oscillations sont amplifiées dans l'amplificateur A₁ de la figure 1. Après redressement, on obtient une composante continue, avec laquelle on charge C_T. La durée de décharge de C_T dépend essentiellement de la valeur de R_T, car la résistance d'entrée de l'amplificateur suivant, A, est faible devant R_T. La constante de temps R_T C_T est de l'ordre de la seconde. Page 254 - Nº 1392

L'amplificateur A₂ attaque l'entrée T (clock, horloge) d'un compteur à 8 positions (0 à 7). Ce compteur est actionné chaque fois que, consécutivement à la décharge presque complète de C_T, la tension de sortie de A₂ diminue en dessous du seuil logique du compteur (passage du niveau « 1 » au niveau « 0 »). Si on excite le microphone à intervalles trop rapprochées, C_T n'a pas le temps de se décharger, et le compteur ne peut avancer.


Comme il faut éviter aussi que le compteur ne soit actionné par des bruits trop distants dans le temps, on a prévu une seconde cellule de retard (R_R, C_R), attaquant un amplificateur A₃, lequel actionne la remise à zéro (R) du compteur si, après réception d'une impulsion sonore, une deuxième n'est pas reçue dans le laps de temps pendant lequel C_R possède une charge suffisante.


Avec cette disposition, on obtient que l'esclave ne réponde effectivement qu'au signal convenablement cadencé du maître, et non pas à des bruits sporadiques. Une telle réponse parasite sera d'autant moins probable que le nombre de positions du compteur est plus élevé. Le nombre 7 a été choisi non pas, en premier lieu, pour sa signification mystique, mais surtout parce qu'un compteur de 8 positions est particulièrement facile à réaliser avec des bascules qui seront, évidemment, du type « maître-esclave ». Toutefois, on ne peut pas utiliser toutes les 8 positions de ce compteur, puisque, du fait de A₃, il accomplit toujours un retour forcé à zéro après la dernière impulsion.

Ce compteur comporte donc un décodage qui ne fournit le niveau logique « I » que lorsque 7 coups auront été correctement comptés. Un instant après, la sortie de décodeur retourne sur « O », en principe du fait de A₃, mais ce retour à « 0 » peut également être dù à une 8° impulsion (parasite) de comptage. Dans tous les cas, ce retour à « 0 » provoque un changement d'état de la bascule F laquelle commande un triac qui, suivant la position précédente de F, va allumer ou éteindre l'ampoule d'éclairage L. Comme on le verra plus loin, il est facile de modifier le compteur de façon qu'il réponde à un nombre inférieur à 7.

SCHEMA ET REALISATION

Bien que le schéma de la figure 1 semble appeler une réalisation « tout intégré », une large utilisation de transistors discrets est, de loin, plus économique. De plus, elle permet le fonctionnement sur une seule source d'alimentation, et elle évite les nom-

breux croisements de connexions qu'ornent, généralement, platines imprimées portant des circuits intégrés. Ces derniers ont ainsi été utilisés uniquement pour les bascules, toutes les autres fonctions étant accomplies par 10 transistors, tous du même type, ce qui facilite l'approvisionnement. On peut utiliser tout NPN doté d'un gain en courant compris entre 120 et 300 (à $I_c = 1...5$ mA) et supportant une tension de collecteur d'au moins 15 V. Les types BC168 A, 2N2924 et 2N3392 conviennent directement, et en modifiant le plan d'implantation, on peut éga lement utiliser des BC148A,

BC183A, BC208A, BC331A, MPS6514, 2N4124 et leurs nombreux équivalents. Les trois diodes du montage peuvent être des 1N914, 1N4154 ou similaires, et pour le redresseur d'alimentation, on pourra utiliser des éléments tels que BY114, 1N323, 1N440, 1N536, 1N550, 1N559, 1N3544, 1N4001, 10J2, 536J2, ou encore donnés pour 0,4 A (ou plus) et 50 V (ou plus).

Dans le schéma de la figure 2, l'amplificateur A_1 (Fig. 1) est constitué par T_1 et T_2 , le potentiomètre R_1 permettant d'ajuster le gain. Le redresseur de signal (D_1, D_2) charge le condensateur C_5 (C_T dans la Fig. 1) dont la

valeur peut être modifiée (0,2 à 1 µF), si on désire obtenir une durée de blocage plus ou moins longue. Les amplificateurs A, (T_3, T_4) et A_3 (T_5, T_6) sont identiques, et leur transistor d'entrée ne reçoit aucune polarisation de base au repos. Ainsi, il ne peuvent être actionnés que par des signaux suffisamment forts pour franchir le seuil émetteur-base des transistors d'entrée. La durée de déblocage du compteur peut être modifiée en agissant sur la valeur de C₈ (C_R dans la figure 1). Les condensateurs C₇ et C₉ éliminent les perturbations électriques qui résultent de la proximité du triac, dans le montage.

Les deux circuits intégrés (SN7473) contiennent au total 4 bascules. Le compteur est constitué par F₁, F₂ et F₃, et le décodage (T₈, T₉) se fait de façon que T₉ ne conduise un courant de collecteur que si le nombre 7 a effectivement été compté. Ce courant actionne alors F₄, et cette bascule commande le triac par l'intermédiaire de T₁₀.

L'ampoule L₁ a été prèvue pour qu'on puisse à tout instant vérifier l'avancement du compteur. Elle est commandée par T₇ dont la base est polarisée par la sortie Q de la bascule F₁. De cette façon, elle est toujours allumée au repos (état du compteur : 0). Quand

l'appareil reçoit une première impulsion sonore, elle ne s'éteint pas immédiatement, mais seulement après la décharge de C_T (Fig. 1), c'est-a-dire au moment où le compteur est prêt à enregistrer la seconde impulsion. Il convient donc d'émettre immédiatement cette impulsion, puis d'attendre le nouvel allumage de l'ampoule, avant d'envoyer la suivante, etc. Le maître peut ainsi apprendre le rythme de claquement de mains qui convient à son esclave, et étudier en même temps la « force de frappe » qui lui est nécessaire, compte tenu de l'ajustage de R₁. L'expérience prouve que le dispositif peut encore être déclenché à une distance de plusieurs mètres, même en présence d'un certain bruit ambiant, si cet ajustage est correctement effectué.

Une fois qu'on aura appris le rythme correct de claquement, on peut retirer l'ampoule de signalisation. Mais, si on la laisse, l'opérateur non averti ne devinera que difficilement sa signification, car il aura toujours tendance à attendre qu'elle se rallume, avant de frapper le coup suivant. Or, si elle s'allume sans que l'appareil ait reçu de signal, cela signifie que le compteur est retourné à zéro. C'est donc bien lors de chaque alternance d'état qu'il faut émettre le signal suivant. Bien entendu, des sifflements, coups de marteau, phrases prononcées

syllabe par syllabe, etc., peuvent remplacer les claquements de main.

La figure 3 montre un plan d'implantation qui a été réalisé sur une platine déjà perforée au pas de 5,08 mm. Le plan a donc été conçu de façon qu'on ait un minimum de trous supplémentaires à percer. Pour faciliter le travail de soudure, les « pattes » des circuits intégrés ont été pliées en « quinconce », de façon à augmenter les distances entre les points de connexion. Les diodes de redressement ne figurent pas sur le plan de la figure 3, car elles ont été montées directement sur le tranformateur d'alimentation.

Lors de l'utilisation (et déjà à l'expérimentation), on devra prendre les précautions d'isolement qui s'imposent du fait que l'appareil est en liaison directe avec la prise de courant. Si on veut éloigner le microphone du boîtier, abritant le circuit, on devra utiliser un câble blindé et suffisamment isolé.

VARIANTES

En modifiant le circuit d'attaque de la bascule F₄, on peut obtenir la commutation pour un nombre d'impulsions inférieur à 7.

Le premier des schémas de la figure 4 montre qu'aucun décodage n'est nécessaire, si on veut déclencher après 4 coups. Sur la ligne correspondante, le tableau de vérité montre que le nombre 4 correspond à l'apparition du niveau « 1 » à la sortie de F₃. Le basculement de F₄ pourra donc avoir lieu immédiatement après, lors de la remise forcée à zéro.

Les deux dessins suivants de la figure 4 montrent qu'un transistor de décodage est nécessaire, si on veut actionner à 5 ou 6 coups. Dans le cas d'un déclenchement à 7 (effectué à l'aide de deux transistors dans la figure 2), la figure 4 montre qu'une porte NAND à trois entrées (SN7410) est également utilisable.

Lors d'un fonctionnement avec 4 unités de comptage, le triac peut être déclenché lorsqu'on prononce, devant le microphone, la phrase « Sesam, ouvre-toi », de façon suffisamment scandée. Des lors, il peut être souhaitable de remplacer l'ampoule d'éclairage par un moteur. La chose est parfaitement possible, car le triac utilisé (40 486) peut commuter plus de 100 W. La puissance de commande, fournie par T₁₀, est d'ailleurs suffisante pour commander un triac commutant 1 kW, pourvu qu'on le munisse d'un radiateur de taille suffisante.

Accessoirement, l'appareil peut être utilisé pour illustrer le

principe du comptage binaire. Pour cela, l'unique ampoule de signalisation de la figure 2 n'est pas suffisante, et il convient d'en ajouter deux autres, commandées, comme le montre la figure 5, par les sorties \overline{Q} des bascules F_2 et F_3 . Au repos, les trois ampoules seront allumées, et cela nécessite, d'ailleurs, un transformateur d'alimentation capable de fournir O,4 A. Lors de l'émission de signaux sonores, les ampoules s'éteindront et se rallumeront alors comme le montre le tableau de vérité de la figure 4, les « 0 » du tableau étant équivalents à des états d'allumage. L'inverse peut être obtenu, quand on connecte les circuits de commande (Fig. 5) non pas sur les sorties Q, mais sur les sorties Q des bascules respectives.

Un fonctionnement avec trois ampoules de signalisation peut, de plus, faciliter l'apprentissage du rythme et de l'intensité des signaux sonores. Cet apprentissage est, d'ailleurs, le point le plus singulier de tout ce qui vient d'être décrit. En effet, il est nécessaire à un point tel que, finalement, on ne sait plus très bien qui, de l'utilisation ou du montage est l'esclave de l'autre.

H. SCHREIBER.

LISTE DES COMPOSANTS

10 transistors plastique NPN 2N2924 (ou autre type de β = 120...300 à I_C = 1...5 mA, V_{CEO} > 5 V).

2 circuits intégrés SN7473.

3 diodes signal au silicium (1N4154 ou similaires).

4 diodes de redressement (0,4 A, 50 V).

1 Triac 400 V, 0,6 A (RCA 40486 ou similaire).

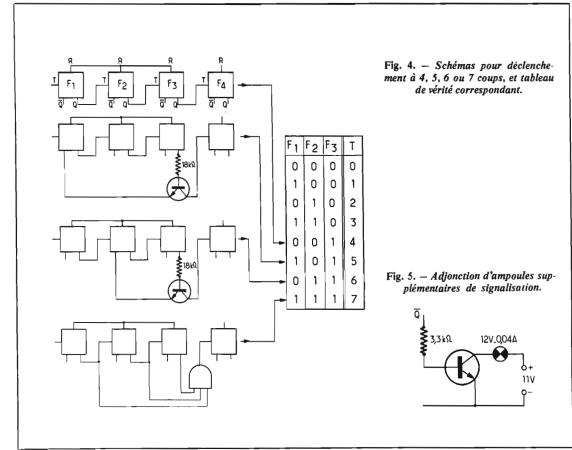
1 capsule d'écouteur (800... 4 000 Ω).

16 résistances 0.5 W (470 Ω , 820 Ω , 2.7 k Ω , 3.3 k Ω , trois de 3.9 k Ω , deux de 18 k Ω , deux de 56 k Ω , 390 k Ω , 820 k Ω , deux de 3.3 M Ω , 68 Ω).

1 potentiomètre 10 k Ω .

3 condensateurs film plastique (2,2 nF, deux de 47 nF).

6 condensateurs électrolytiques tantale, type « goutte » (trois de $0.2~\mu\text{F}$, deux de $0.5~\mu\text{F}$, un de $10~\mu\text{F}$).


3 condensateurs électrolytiques aluminium (50 μ F/6 V, 220 μ F/6 V, 1 000 μ F/14 V).

1 ampoule 12 V, 0,04 A (ou 6 V, 0,04 A, en serie avec une résistance de 150 Ω).

1 transformateur d'alimentation 10 à 12 V, 0,3 A.

1 platine pour circuit imprimé 6 x 13,3 cm, perforée.

(Tous ces composants sont disponibles aux Ets Radio Prim.)

Page 256 - Nº 1392

Par R.A. RAFFIN

RR - 11.17. - M. J. Granval, 17 - La Rochelle.

Nous ne possédons aucun schéma ou documentation se rapportant à l'émetteur Bendix type TA-120.

RR - 11.18. - M. Philippe Redoutey, 93 - Pantin.

BTW11-400 et BTW14-400 sont des triacs dont la tension limite directe et inverse de crête répétitive est de 400 V. Le courant efficace limite est de 11 ampères pour le premier, et de 14 ampères pour le second (pour 85°C). Le courant de gâchette est de 50 mA pour les deux modèles.

RR - 11.19. - M. Michel Marque, 33 - Ambarès.

1º Un montage utilisant un tube type BE416 en amplifica-teur HF linéaire 27 MHz a été publié dans le numéro 1308, page 184.

2º Le tube 6BA6 est une pentode HF-MF à pente variable; il convient dont très mal en amplificateur BF. C'est le tube 6AU6 qui doit être utilisé dans cette fonction.

RR - 11.20. - M. Maxime Blanc, 83 - Cotignac.

Nous ne connaissons pas les appareils qui vous ont été fournis et, de ce fait, nous ne pouvons absolument pas vous renseigner valablement d'après le dessin joint à votre lettre.

Des rectangles avec des points noirs représentant des Des rectangles cosses de connexion ne permettent pas d'identifier ces cosses, ni de savoir à quoi elles correspondent...

Ce sont les schémas internes complets de la tête FM et de la platine FI qu'il faudrait nous adresser afin que nous puissions vous indiquer les raccordements a effectuer. Nous restons à votre disposition.

RR - 12.04-F. - M. R. Boui-44-Pont-Saint-Martin. chet.

Bien que votre demande ne soit pas très explicite, nous pensons que le schema reproduit sur la figure RR - 12.04 correspond à ce que vous désirez, à savoir : préamplificateur pour tête de lecture de magnétophone $(Z = 4.5 \text{ k}\Omega \text{ à } 1000 \text{ Hz}) \text{ avec}$ alimentation 9 volts (-) à la

Le transistors Q₁ et Q₂ sont du type 2N2926 (SESCOSEM) ou BC109 (R.T.C.). Si besoin est, la courbe de réponse peut être modifiee en agissant sur la valeur des éléments (22 k Ω et 47 nF) de la boucle de contreréaction.

tateur électronique, les deux sidéviation verticale.

RR - 12.07. - M. Claude Beguin, 27 - Pacy-sur-Eure.

1º Sur votre schéma, la résistance située entre le transformateur d'alimentation et le pont de diodes est une simple résistance au carbone de 5 à 10 ohms type 2 W. Ce n'est ni une VDR, ni une CTN, mais une résistance très ordinaire.

Néanmoins, si cette résistance a été détruite, il y a vrai-

gnaux à observer; il n'est donc pas nécessaire d'avoir deux amplificateurs distincts pour la

0+ 9 V 500 µF 10 µF Sortie Entrée 22 ks 47 nF 22 k O 100 µF Fig. - RR - 12.04

RR - 12.06. - M. Noël Leclerc, 27 - Verneuil-sur-Avre.

1º Nous ne vous conseillons pas de remplacer le tube cathodique de votre oscilloscope par un autre de plus grande dimension. En effet, la THT serait vraisemblablement insuffisante; d'autre part, les gains des amplificateurs vertical et horizontal seraient également insuffisants pour développer l'oscillogramme sur un écran plus grand.

2º Un commutateur électronique permet effectivement d'examiner simultanément, par superposition, deux phénomènes différents avec un tube cathodique monocanon. C'est le même amplificateur vertical qui reçoit alternativement, grâce au commusemblablement un motif. Il vous faut donc par ailleurs vérifier que le pont de diodes et les condensateurs de filtrage faisant suite ne sont pas en court-circuit.

2º Il n'est pas question de faire tourner normalement (nous insistons sur ce dernier terme) un moteur triphasé en l'alimentant seulement entre deux phases, sa troisième borne étant alimentée par l'intermédiaire d'un condensateur...

RR - 12.08. - M. François Jeuniaux, 57 - Terville.

Nous ne connaissons pas le matériel qui vous a été livré et, de ce fait, nous ne pouvons pas

vous en indiquer le branchement. Seul votre fournisseur (en l'occurrence les Ets L.A.G.) peut vous fournir ce renseignement.

Notre revue ne saurait être tenue pour responsable de la publicité des annonceurs.

RR - 12.09. - M. Jean-Marc Lioger, 42 - Chambon-Feugerolles.

lo Les caractéristiques du tube cathodique 3BP1 ont déjà été publiées dans nos numéros 1104 et 1156 auxquels nous vous demandons de vous reporter.

2º Le tube 3DP1 présente exactement les mêmes caractéristiques électriques que le tube 3BP1. Le brochage est également le même à la petite différence près suivante : la broche 4, dans le 3BP1, correspond à une connexion interne (donc à ne pas utiliser); dans le 3DPI, cette broche 4 correspond à un blin-

3º Nos documentations ne donnent pas de renseignements en ce qui concerne leur rémanence (ou persistance). Mais ces tubes conviennent pour la réception panoramique dans le cas du balayage à 50 Hz généralement préconisé.

RR - 12.10. - M. Bernard Vedel, 34 - Montpellier.

Nous vous prions de bien vouloir vous reporter à notre numéro 1336, page 17. Le bas du schéma correspond au montage dont vous disposez; le haut du schéma représente donc ce qu'il vous faut réaliser.

RR - 12.11. - M. Robert Grellier, 17 - Fouras.

En ce qui concerne la théorie des antennes verticales rac-courcies, nous vous suggérons de vous reporter à l'ouvrage « L'Emission et la Réception d'amateur » (7° édition), à partir de la page 535 (Librairie parisienne de la radio, 43, rue de Dunkerque, Paris-10e).

Nº 1392 - Page 257

Que la bobine de compensation soit à la base ou intercalée dans l'antenne, les résultats sont sensiblement équivalents. Disons cependant que la résistance de rayonnement est un peu plus grande dans le cas de l'antenne à charge centrale.

De toute façon, la pratique a montré que le **calcul** des bobines de compensation était assez illusoire... Le seul procédé valable pour leur détermination exacte réside dans la mesure de l'accord, de la résonance, de l'ensemble (antenne + bobine) au grid-dipmètre.

RR - 12.12. — M. Jacques Hormain, 62 - Brobères.

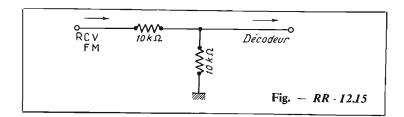
Le numéro 805 du « Haut-Parleur » date de 1947... Le montage d'émetteur qui y était décrit comportait un seul tube 807 auto-oscillateur à quartz (bande 40 m).

Nous nous refusons à croire que vous faites de l'émission (ou que vous voulez en faire) avec un tel montage d'une technique datant de 25 ans... et qui ne correspond plus aux normes actuelles. Nous ne pouvons décemment pas re-publier ce schéma en 1973! Si vous tenez particulièrement à ce montage ou à ce schéma, veuillez nous faire connaître votre adresse exacte complète, et nous vous ferons executer une photocopie.

RR - 12.13. — M. Guy Calvet, 31 - Toulouse.

lº Nous n'avons pas trouvé de triac immatriculé Q4040 dans nos documentations.

2º Circuits intégrés SL... Veuillez consulter les Ets Plessey-France S.A., 16-20, rue Pétrarque, Paris (16°).


RR - 12.14. — M. Jacques Ulian, 32 - Lectoure.

Le circuit intégré µA 703 (de Fairchild) est un circuit intégré linéaire qui est employé comme amplificateur à grand gain, notamment dans les étages à fréquence intermédiaire des tuners FM.

Veuillez vous reporter à notre n° 1202, page 149. La figure 2 indique précisément le brochage du circuit intégré µA 703 et son mode d'utilisation sur une platine FI pour FM.

RR - 12.15-F. — M. J.-L. Sallard, 35 - Rennes.

En principe, on peut utiliser un décodeur stéréophonique à transistors à la suite d'un récep-Page 258 – N° 1392

teur FM ou d'un tuner FM à lampes; il n'y a pas de contreindication...

Certaines précautions sont néanmoins à prendre. Il est, par exemple, recommandé de supprimer le circuit de désaccentuation de la sortie détection FM afin de transmettre intégralement toute la bande de fréquences au décodeur. D'autre part, à la sortie d'un tuner à lampes, il y a un risque de saturation de l'étage d'entrée du décodeur stéréo (signaux démodulés d'une amplitude élevée). Le remède consiste à opérer une atténuation à l'aide de deux résistances (voir schema de la figure RR - 12.15).

Enfin, il est évident qu'il faut prévoir une alimentation appropriée pour le décodeur à transistors.

RR - 12.16. — M. Philippe Capelle, 33 - Talence.

Le Magicolor II décrit dans le numéro 1194 peut être modifié pour une puissance de 800 watts par canal en utilisant des thyris tors plus importants du point de vue intensité, par exemple le type BT101/500R. Il n'y a rien à modifier par ailleurs.

RR - 12.17. — M. Mario Davognon à Marieville-Québec (Canada).

1º Sur le schéma, figure 6, page 165, nº 1239, les quatre résistances R₁₃, R₁₄, R₁₅ et R₁₆ de 0,5 ohm sont du type bobiné. Toutes les autres résistances sont d'une puissance de 0,5 W.

2º En principe, sur un schéma, lorsque la puissance des résistances n'est pas spécifiée, cela veut dire que le type courant de 0,5 W (et parfois même moins) peut convenir. Lorsque la puissance à dissiper est supérieure, la puissance de la résistance à employer est généralement indiquée.

RR - 12.18. — M. François Heibulot, 14 - Caen.

1º L'intercalation d'une résistance en série dans la liaison entre votre préamplificateur (H.P. nº 1239, page 123) et votre amplificateur Philips ne peut être que bénéfique.

2º En ce qui concerne ce préamplificateur, ses auto-oscillations et accrochages doivent être réduits :

a) En montant un condensateur de 500 μ F entre le + 18 V (apres R_{30}) et la masse;

b) En portant a 500 μ F les capacités de C_{19} et de C_{20} ;

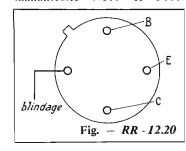
c) En augmentant aussi notablement la capacité de C₃.

3º Pour l'utilisation d'une cellule céramique de pick-up connectée aux bornes VE, il convient d'augmenter R₁ à 100 kQ environ.

RR - 12.19. — M. Edmond Gilli, 95 - Ermont.

Sur l'amplificateur BF que vous venez de construire, la tension continue au point milieu des transistors de l'étage de sortie doit être égale à la moitié de la tension d'alimentation appli quée, donc — 12 V par rapport a la masse pour une tension d'alimentation de — 24 V.

Puisque vous mesurez une tension de – 24 V sur ce point milieu par rapport à la masse, cela indique que l'étage supérieur est en court-circuit (probablement le transistor).


RR - 12.20-F. — M. Y. Linard, 35 - Rennes.

1º La correspondance BC154 = BC107 est donnée dans le petit manuel « Semiconducteurs » (6º édition) publié par Radio Prim.

Mais il s'agit probablement d'une erreur... Une autre documentation consultée donne l'équivalence BC154 = BC205 (SESCOSEM)... ce qui semble plus normal.

2º Le transistor SFT358 (de SESCOSEM) correspond aux AF114 et AF124 (de la R.T.C.). Brochage, voir figure RR-12.20.

3º H.P. Nº 1278, page 141. Nous n'avons pas trouvé la correspondance des transistors immatricules N610 et P610.

Mais la réalisation proposee étant de chez Radio-Prim, ces établissements pourront certainement vous fournir tous les semiconducteurs nécessaires.

RR - 12.21. — M. Roland Soulat, 87-Limoges.

l° Sur votre amplificateur BF, vous nous dites que la tension continue au point milieu de l'étage final est de 33 V; mais vous ne nous dites pas quelle est la tension totale appliquée : la tension au point milieu doit être la moitié de la tension d'alimentation.

2º D'autre part, en qui concerne l'étage pré-driver (BC207 + 2N1889), il conviendrait de nous indiquer l'intensité circulant dans cette branche et les tensions exactes (mesurees au voltmetre électronique) sur chaque electrode des transistors (par rapport à la masse). Ne pouvant pas disposer de votre amplificateur, ces indications sont impératives pour que nous puissions vous conseiller. En fait, il y a très probablement un ajustage du fonctionnement des transistors à faire dans cette branche predriver (par retouche aux valeurs de quelques résistances).

RR - 12.22. — M. Christian Vachet, 30-Nîmes.

Un triac, comme un thyristor, peut être déclenché par un courant alternatif variable traversant une cellule photorésistante du type LDR. Dans le schéma proposé, il suffira éventuellement d'ajuster les valeurs du pont R₃ + R₄ pour obtenir le courant de déclenchement requis (selon le type de triac employé).

RR - 12.23. — M. Dominique Bracali, 57-Nilvange.

Sur votre modulateur de lumière, si les ampoules restent continuellement allumées, ce n'est pas que les triacs ne déclenchent pas ; c'est au contraire qu'ils sont continuellement enclenchés...

En ramenant les deux potentiomètres à zéro, ou bien en l'absence de signaux BF appliqués à l'entrée, les ampoules doivent s'éteindre. Dans le cas contraire, c'est que les triacs sont « claqués » (court-circuit).

RR - 12.24. — M. Daniel Reibel, 93-Tremblay-lès-Gonesse.

le L'entrée de l'indicateur de niveau décrit dans le numéro 1364, page 122, peut se connecter en parallèle sur la liaison entre

RECTIFICATIF

ALIMENTATION STABILISÉE 10 A - RÉGLABLE EN TENSION

Tableau manquant dans l'article paru dans le nº 1383 du Haut-Parleur pages 137, 138 et 139.

Plage de tension de sortie (Volts)	Tension efficace au secondaire du transfo (Volts)	Puissance du transfo (V.A.)	Isolement du condensateur de filtrage (Volts)	R ₁ (1/2 W)	R ₂ (1/2 W)	R ₃ (1/2 W)	Z (1/2 W)	CRI à CR4
12 à 20	22	320	35/40	1 kΩ	470 Ω	1,5 k	MZ500-15	MR1121
16 à 24	26	370	40/45	2,7 kΩ	l kΩ	1,2 k	MZ500-19	MR1121
20 à 28	30	420	50/60	3,3 kΩ	2,2 kΩ	3,3 k	MZ500-21	MR1121
24 à 32	34	480	50/60	4,7 kΩ	5,6 kΩ	2,7 k	MZ500-23	MR1122

deux étages d'un amplificateur BF (par exemple, vers l'étage driver).

2º Dans votre cas, il serait peut-être plus simple que vous adoptiez le montage décrit à la page 316 du nº 1374 (réponse RR - 7.27-F), montage qui se connecte en parallèle sur la sortie « haut-parleur ».

Naturellement, comme il s'agit d'un amplificateur stéréophonique, normalement il vous faut réaliser deux indicateurs (un sur chaque canal).

RR - 12.25. — M. Roger Petitot, 57-Créhange.

Bongo électronique HP numéro 1374, page 263.

le Puisqu'un bourdonnement existe même en alimentation par pile, la cause du mauvais filtrage (dans le cas de l'alimentation par le secteur) est à éliminer. A distance, nous ne pouvons que supposer, et nous pensions à l'éventualité du fonctionnement permanent de l'un des oscillateurs... ce qui doit être facile à déceler.

2º Pour le condensateur C₁₇, le négatif doit être du côté de la base de TR.

la base de TR₆.

3° Les condensateurs C₁ à C₁₅ peuvent être du type polyester ou mylar.

RR - 12.26. - M. Louis Ragot, 10-Troyes.

l° Pour augmenter la puissance sonore de votre sirène électronique, vous pouvez effectivement employer un haut-parleur à chambre de compression.

2º Une autre solution consiste à faire suivre la sirène par un amplificateur supplémentaire du genre de celui décrit à la page 141 du n° 1278. Pour cette solution aussi, un haut-parleur à chambre de compression augmenterait encore la puissance sonore.

RR - 12.27. — M. Gérard Tricard à Breisach-am-Rhein (R.F.A.).

Nous n'avons aucun renseignement précis en ce qui concerne les caractéristiques techniques des émissions de télévision effectuées — ou prévues — en Afrique Noire ou à Madagascar.

RR - 12.28-F. — M. Paul Tressos, 35-Domagne.

PM 07 (SFR) : Pentode HF/MF; chauffage = 6,3 V, 0,3 A; $V_a = V_{g2} = 250 \text{ V}; V_{g1} = -2 \text{ V}; I_a = 10 \text{ mA}; I_{g2} = 2,5 \text{ mA}; \rho = 1 \text{ M}\Omega; S =$

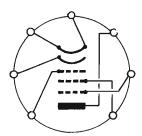


Fig. - RR - 12.28

7,5 mA/V; autre immatriculation = 6 AM 6.

Brochage: voir figure RR-12.28.

RR - 12.35. — M. Bernard Moreau, 59-Douchy.

Pour l'adaptation de votre microphone du type « cristal » sur l'entrée 2 500 Ω de l'amplificateur, vous pourriez essayer d'in-

tercaler une résistance en série de l'ordre de 200 k Ω ... Mais cette solution se traduit par un gaspillage de signal BF, et il se pourrait que la préamplification ne soit plus suffisante.

Une autre solution consiste à intercaler un étage adaptateur d'impédance. Il faudrait alors nous communiquer le schéma du mixer actuel pour que nous puissions examiner les modifications et adjonctions à effectuer.

LE COURS HI-FI EURELEC par correspondance

Fidèle au principe éprouvé de ses cours par correspondance, Eurelec propose dans ce nouveau cours la réalisation d'une chaîne Hi-Fi, chaque étape de la réalisation ou de la mise au point est longuement expliquée de façon à ce que l'élève comprenne le rôle de chacun des éléments et qu'il puisse facilement le transposer sur n'importe quel appareil du commerce.

Ce cours se compose de 10 groupes de leçons comprenant :

10 leçons pratiques,

- 10 leçons d'informations techniques,
- 5 recueils d'équivalence des semi-conducteurs (avec environ 25 000 composants),
- 5 schémateques avec de nombreux schémas d'amplificateurs des principaux constructeurs europeens et américains,

6 séries de matériel, avec plus de 280 composants et accessoires pour la construction d'une chaîne haute fidélité.

Rappelons que Eurelec dispense toujours les cours suivants : Radio-Stéréo, Télévision, Transistors, Mesures Electroniques, Electrotechnique, Régle à calcul, Informatique, Photographie et Langues étrangères.

Calculatrice de Poche

« DATAMATH »-

Production TEXAS INSTRUMENTS

Capacité 8 chiffres - Affichage par diodes électro-luminescentes - 4 opérations (+ - x :) solde négatif, calculs en chaîne et utilisation facteur constant pour multiplier ou diviser. Point décimal automatique. Virgule flottante (entrée et sortie). Calculs en chaîne ou mixtes.

Fonctionne n'importe où : dans votre main, sur votre table, au bureau, au chantier, en voyage.

Poids : 320 g. Dimensions : 13 \times 7 \times 3 cm.

Livrée complète avec accu cadmium nickel incorporé, chargeur + housse.

PRIX SPÉCIAL : 947 F

T.T.C. T.V.A. à 20 % incluse

Garantie: 1 AN pièces et main-d'œuvre - Envoi franco pour toutes commandes accompagnées de chèque, Vt C.C.P., mandat.

RADIO - CHAMPERRET

« Electronique »

12, place Porte Champerret - PARIS-17°

C.C.P. Paris 1568-33

Nº 1392 - Page 259

Tél.: 754-60-41

NOUVEAUTÉS

CARTOUCHE DE NETTOYAGE STEREO 8

N connaît les appareils utilisant des cartouches du type Stéréo 8 à bande

Dans ces modèles, le cabestan d'entrai nement et la tête magnétique se trouvent au fond d'un tunnel large de 22 mm et à une profondeur de 80 mm.

On sait que les têtes magnétiques sont très fragiles, c'est-à-dire qu'il ne faut pas les rayer ou les toucher avec un objet métallique, car on peut les abîmer ou les aimanter, ce qui provoque du souffle à la lecture.

Par ailleurs, les bandes magnétiques ne sont pas toujours à l'abri des poussières et alors cette poussière peut se déposer sur les têtes avec pour résultat une reproduction défectueuse due à la mauvaise adhérence de la bande magnétique sur les têtes.

Cela peut egalement entraîner du pleurage si le cabestan d'entraînement est gras ou sale.

Pour obtenir un fonctionnement parfait, il est donc nécessaire de nettoyer périodiquement les têtes et le cabestan.

Si une telle opération est relativement facile dans le cas des mini-cassettes où la tête est plus facilement accessible, cela n'est pas le cas pour des appareils à cartouche Stéréo 8.

NON-ABRASIVE 8 track cartridge head & capstan cleaner

Il existait déià certains modèles de cartouches de nettoyage, mais basées sur une bande de défilement et cette bande était malheureusement abrasive.

Après des recherches prolongées, il a été possible de mettre au point une nouvelle cartouche de nettoyage qui, cette fois, comporte une bande en feutre fixée sur un patin semi-fixe.

Un liquide spécial étudié pour nettoyer tête et cabestan, sans corrosion, est livré avec cette cartouche ainsi qu'une petite brosse.

Le patin comporte un petit réservoir permettant d'humidifier la bande en feutre.

A l'arrière de la cartouche se trouve un levier imprimant un mouvement de va-etvient au patin et donc à la bande en feutre qui, de ce fait, nettoie impeccablement la tête ainsi que le cabestan qui est en mouvement par l'introduction de la cartouche.

La brosse permet de nettoyer la bande en feutre pour un nouvel emploi.

Le tout est présenté sous emballage plas-

tique à l'abri de la poussière.

Ce nouveau matériel très intéressant est importé par Universal Electronics et est vendu à un prix très raisonnable de 24 F, y compris la bouteille et la brosse.

Il existe aussi une mini-cassette de nettoyage à bande feutre.

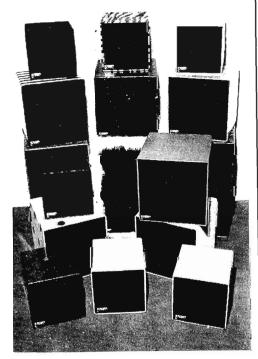
LES ENCEINTES ACOUSTIQUES « KRIKET »

Une harmonie de petites boîtes pour ceux qui écoutent bien.

Une conception toute nouvelle dans la réalisation d'enceintes acoustiques. Extrêmement légères, celles-ci sont fabriquées à partir de panneaux de contreplaqué de carton spéciaux à ondulations successives croisées.

Ce procédé, associé à une judicieuse répartition des divers constituants, donne d'excellents résultats du point de vue de l'acoustique.

Il en existe 6 types principaux :


Type Kriket 750: 10 watts eff. 17 000 Hz - 1,5 kg : 210 F T.T.C.

- Type Kriket 850 : 15 watts eff. 32/

20 000 Hz - 2,1 kg : 310 F T.T.C.

— Type Kriket 950 : 15 watts eff. - 2 voies 25/20 000 Hz - 3 kg : 420 F T.T.C.

- Type Kriket 1050: 20 watts eff. 2 voies 25/20 000 Hz - 3,6 kg : 550 F T.T.C.

Nirvana 400: 30 watts eff. - 2 voies

20/20 000 Hz - 8 kg : 810 F T.T.C. - Nirvana 600 : 35/40 watts eff. - 3 voies 20/22 000 Hz - 13,5 kg : 1 100 F T.T.C. La présentation n'est pas le moindre atout

de cette gamme d'enceintes originales :

50 coloris allant des couleurs unies : blanc, rouge, vert, jaune, bleu, puis d'autres : blanches, zébrées, rayées, pointillées, lumineuses, transparentes, pailletées, et même en fourrure dans 4 couleurs différentes.

(Distributeur : Nadis Acoustic).

INFORMATION

L'E.V.R.

NE nouvelle compagnie internationale dans le domaine de la vidéo-cassette électronique a été fondée à Tokyo. Il s'agit de Nippon E.V.R. Limited, compagnie multinationale aux actionnaires japonais, anglais et suisses pour la promotion et la transformation de programmes audio-visuels en cassettes E.V.R.

La société, au capital de 17 millions de francs, regroupe Teijin Ltd, I.C.I. (Imperial Chemical Industries Ltd), Ciba-Geigy Ltd, Hitachi Ltd, Mitsubishi Electric Corporation et Mainichi Broadcasting System Inc.

La première usine de cette société nouvelle sera construite moyennant un investissement de l'ordre de 34 millions de francs à Mihare, près d'Hiroshima.

Elle produira des cassettes E.V.R. au rythme initial de 300 000 par an. Il est prévu que l'usine sera opérationnelle des juillet 1973.

De même que l'usine de l'E.V.R./Londres à Basildon, Nippon E.V.R. a l'intention de transformer les programmes originaux émanant de toutes sources. En collaboration avec les différents fabricants d'appareils lecteurs à travers le monde et l'organisation E.V.R. basée en Europe, elle veut promouvoir sur le plan mondial la distribution du système E.V.R.

Les prévisions de vente de la nouvelle société sont de l'ordre de 25 millions de francs, des la première année de production et de 40 millions pour la 2e année. La fondation de cette nouvelle société a permis aux parte-naires japonais de l'E.V.R. d'avoir accès à tous les aspects de la commercialisation du système, tant du point de vue de la production des appareils lecteurs (Mitsubishi et Hitachi) que de la création des programmes (Mainichi), qu'enfin de la transformation de ces programmes originaux en cassettes E.V.R.

Cette nouvelle alliance est une éclatante confirmation de la validité du système E.V.R., le système de vidéo-cassettes le plus avancé, tant du point de vue de la qualité, de la fiabilité que de l'économie du fonctionnement.

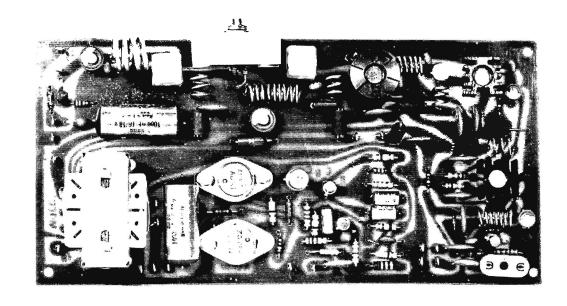
Elle sanctionne le passage au stade commercialement et techniquement adulte du seul système universellement compatible.

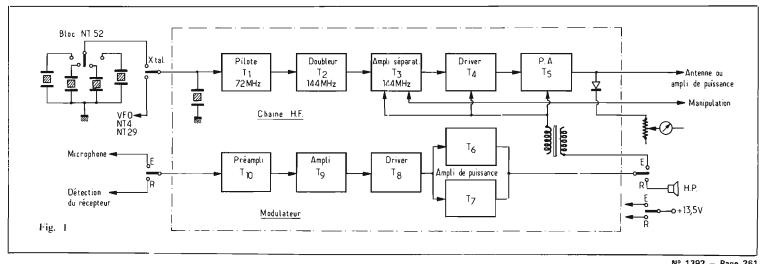
Pour tous renseignements complémentaires s'adresser à : M. Jacques Ferrari, E.V.R. S.A.R.L. 90, Champs-Elysées, Paris (8e).

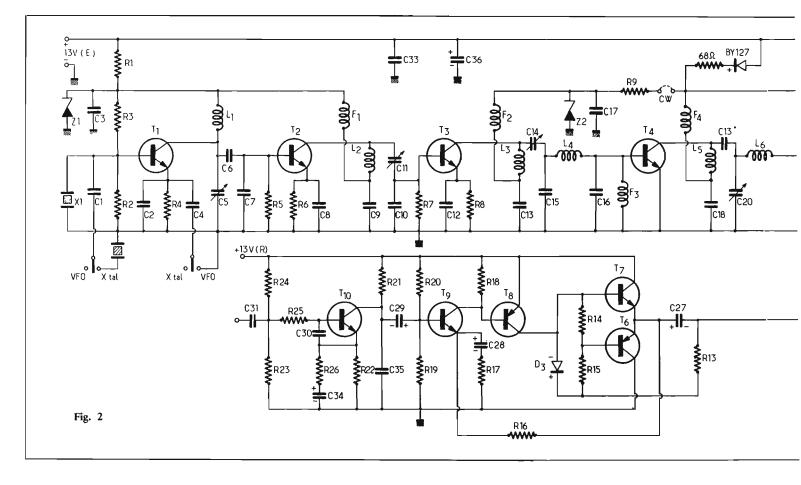
Page 260 - Nº 1392

L'ÉMETTEUR 144 MHz NT17C - SEFRAC

firme française Sefrac construit une gamme étendue de matériels des tinés aux radios amateurs, et généralement conçus sous forme modulaire. Il est possible de construire des stations complètes VHF à l'aide de ces modules qui offrent à l'amateur toute la souplesse de conception souhaitable avec un prix de revient réduit.


L'émetteur N717C que nous analysons est fourni complet avec son modulateur AM, sur un circuit imprimé de faible encombrement. Il est destiné à pouvoir être inclus dans une station utilisable en portable. mobile, ou encore en station fixe comme exciter avant un PA de grande puissance.


CARACTERISTIQUES


Gamme couverte : 144 146 MHz.

Modulation: AM.

Taux de modulation : 100 %. Puissance de sortie HF pure : 3,8 W.

Puissance de sortie HF modulation à 100 % : 5 W.

Impédance de sortie : 50-75 Ω .

Bande passante du modulateur : 100 Hz - 7 kHz, - 3 dB.

Puissance de sortie basse fréquence : 6 W.

Microphone: dynamique, 10 à 50 k?.

Tension d'alimentation : 13,6 V, négatif à la masse.

Consommation : porteuse pure, 0,75 A; modulation à 100 %, 2 A.

Encombrement : $205 \times 108 \times 41$ mm, pour un poids de 0.420 kg.

PRESENTATION

La réalisation est soignée, les composants sont disposés sur une plaque de verre époxy, le circuit imprimé étamé est protégé par un vernis. Les composants sont tous de bonne qualité, le câblage judicieusement réparti. Les raccordements s'effectuent sur des œillets soudés sertis. Mis à part l'oscillateur, tous les transistors de la chaîne HF sont munis de radiateurs.

La fixation de la plaque circuit est prévue aux angles, quatre trous sont percés pour disposition sur colonnettes.

Le pilotage est soit possible directement sur l'appareil par un quartz, soit encore extérieur à l'aide du bloc de 4 quartz NT52 Page 262 – N° 1392

ou par VFO. Le constructeur préconise l'utilisation du VFO NT4-NT29 fonctionnant par mélange de fréquences (voir schéma Fig. 1).

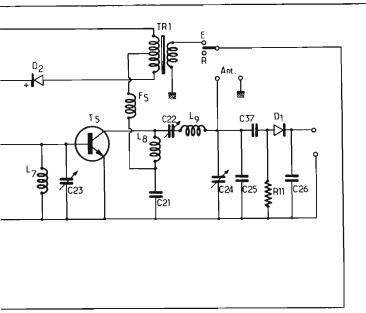
Le modulateur est utilisable comme bloc basse fréquence à la réception, ce qui est bien commode lors de la réalisation d'un transceiver mobile car sa puissance est tout à fait convenable.

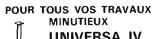
FONCTIONNEMENT (schéma Fig. 2)

Chaîne HF. - On part de l'oscillateur à quartz, transistor T₁, utilisant un quartz 72-73 MHz en overtone 5. Comme nous l'avons indiqué, cet étage peut être raccordé au module NT52 qui comporte quatre quartz commutables, ou encore fonctionner en amplificateur lorsqu'il recoit une excitation provenant du VFO. La tension d'alimentation de T₁ est régulée par une diode zener Z₁ a une valeur de 10 V. La charge collecteur L,-C, est accordée sur 72 MHz. Le couplage à l'étage suivant est assuré par le diviseur capacitif C₆-C₇, puis les signaux arrivent sur la base du transistor T2, étage doubleur. Celui-ci porte le signal sur la fréquence de travail 144 MHz recueillie aux bornes du circuit accordé L2-C11, couplé capacitivement à l'étage suivant.

Le signal attaque ensuite un amplificateur séparateur, transistor T₁, qui comporte un filtre de bande en pi en sortie C₁₅ L₄-C₁₆, att. a eliminer toutes traces du 72 MHz résiduel. Le transistor driver T₄ est monté en émetteur à la masse, le couplage est assuré par un circuit en pi, adaptant exactement l'impédancebase du PA au driver.

Le PA, transistor T_5 a une charge constituée par un circuit en L qui lui permet d'être raccordé à une utilisation d'impédance comprise entre 50 et 75 Ω .


Une fraction du signal de sortie est prélevée par l'intermédiaire du condensateur C_{37} pour être redressée, filtrée par la diode D_1 et le condensateur C_{26} puis être appliquée à un galvanomètre indiquant la puissance relative en sortie et contrôler la modulation. La manipulation s'effectue par coupure de l'alimentation sur le transistor T_3 , amplificateur séparateur.


La modulation est appliquée simultanément sur les trois derniers étages, T_3 , T_4 , T_5 ; sur les deux premiers en crêtes positives, sur le PA en crêtes positives et négatives. Sur le transistor T_3 , la diode zener L_2 écrête les signaux d'amplitude supérieure à 27 V, afin d'éviter la surcharge ou la destruction de l'étage suivant. La modulation atteint dans ces conditions 100 % que l'on ne peut dépasser.

Modulateur. - L'étage d'entrée préamplificateur, transistor T₁₀ est monte en émetteur commun contre réactionné sur l'émetteur par le reseau R₂₆-C₃₄, le condensateur C₃₀ agissant en filtre passebas pour limiter la bande passante transmise. La liaison à l'étage suivant, transistor T₉ est assurée à travers le condensateur C29, puis les signaux arrivent sur le driver T₈ par une liaison continue. Les transistors de sortie T₆-T₇ sont du type complémentaire, la sortie est raccordée à travers le condensateur C27 de 1000 μF, et une contre-réaction est réinjectée sur T₉. Les signaux sont dirigés après commutation sur le haut-parleur en réception, ou sur le transformateur TR, à l'émission.

MESURES

Avant toute chose, il est bon de mettre en garde les utilisateurs contre deux fausses manœuvres qui peuvent provoquer des catastrophes. Avant la mise sous tension, il est nécessaire de raccorder une charge sur la sortie antenne sous peine de voir se détruire les deux derniers étages HF. Ensuite, insérer une diode de protection en série avec l'alimentation (branchée dans le bon sens) pour éviter en cas d'inversion accidentelle de polarité la destruction de tous les transistors.

UNIVERSA IV

Cette loupe a été étudiée et expérimentée pour les divers travaux effectués dans les industries électroniques : bobinage, câblage, soudure, assemblage et verifications diverses.

- Optique de grossissement 4 X, composée de 2 lentilles apla-Optique
- Grand champ de vision (90 mm de large x 210 mm de long).
- Distance de travail variant de 16 à 30 cm sous la lentille. déformation d'image. Aucune
- Adaptation à toutes les vues (avec ou sans verres correcteurs) et ri-goureusement sans fatigue.
- Eclairage en lumière blanche masquée par un déflecteur. Manipulation extrêmement libre (rotation, allongement).
- Mise au point rigoureuse.
- Indispensable Indispensable pour l'exécution de tous travaux avec rendement et

CONSTRUCTION ROBUSTE Documentation gratuite sur demande

ÉTUDES SPÉCIALES SUR DEMANDE EL OPTIQUE, LOGICO DE PRÉCISION OPTIQUE, LOUPES

BUREAU EXPOSITION et VENTE 89, rue Cardinet, PARIS (17°) Téléphone : CAR. 27-56 USINE : 42, avenue du Général-Leclerc 91-BALLANCOURT

Téléphone : 498-21-42

GALLUS

Nous avons contrôlé les caractéristiques de l'appareil sous une tension de 13,5 V. La puissance relevée est supérieure à celle indiquée par le constructeur, celui-ci nous avait signalé qu'il conservait une marge dans l'énoncé des caractéristiques. Nous avons relevé en HF pure 4,8 W sur charge de 50 \(\Omega\), 4,7 W sur charge de 75 Ω .

La modulation atteint 100 % et il n'est pas possible de surmoduler.

La puissance basse fréquence atteint 6,1 W eff. sur charge de 2,5 Ω , la bande passante s'étend de 90 Hz à 8 kHz à -3 dB, là aussi supérieure à ce qui est annoncė.

CONCLUSION

Nous sommes en présence d'une réalisation sérieuse, bien conçue, et qui doit séduire l'amateur. Toutes les caractéristiques indiquées sont inférieures aux performances mesurées sur l'appareil, ce qui est à l'honneur de ses constructeurs. L'appareil est vendu monté seulement, ce qui présente une garantie de fonction nement optimal. Il serait toutefois souhaitable qu'une diode de protection contre les inversions de polarité de l'alimentation soit montée, ce qui éviterait des acci dents catastrophiques en cas de l'ausse manœuvre.

LA POCHETTE *U BRICOLEUR*

« Magister »

50 avec des composants de 1^{er} choix POCHETTE SUIVANT LA

Composition des pochettes

v. réfé		ce		Nº de référence	
1	_	4	boutons-transistor	36 15	résistances de 250 à 5 000 ohms
	_		cadran et 1 bouton plexi pour		résistances de 5 600 à 47 000
-			fabrication de postes transistors		ohnis
3			m fil de câblage		résistances de 50 000 ohms à
			condensateurs ajustables de 3 à		10 mégohms
		-	30 pF		résistances bobinées de 1
5	_	3	condensateurs de filtrage - Ten-		ohm à 20 ohms
			sion inférieure à 15 V		résistances bobinées de 30 à
6	$\mathcal{K}_{i}(x)$	2	condensateurs de filtrage - Ten-		200 ohms
			sion supérieure à 20 V	41 - 3	résistances bobinées de 250 à
7	1	2	condensateurs de filtrage de		2 000 ohms
			1 000 µF/10 à 16 V		semi-conducteur au choix (réf.
8	***	1	condensateur de filtrage de 2 000		comme suit ou équivalent) :
			MF/16 à 25 V		AC125 - AC126 - AC127 - AC128 -
9		10	condensateurs céramique de 1 pF		AC181 - AC182 - AC184 - AC187 -
			à 3 000 pF		AC188 - AF117 - AF126 - AF127 -
10		5	condensateurs mylar de 2 000 pF		AF 178 - BC107 - BC108 - BC109
			à 50 000 pF		Soudure (40 % plomb - 60 % étain)
-	-		condensateurs 0,1		supports Noval
			condensateurs de 0,22 à 0,68 µF		supports transistors
13	***	2	condensateurs 1 MF		transformateur de sortie - tran-
14		1	condensateur 2 MF	-	sistor
15		2	condensateurs papillon jusqu'à	47 - 1	transformateur Driver - transis-
			68 pF		tor
16		100	cosses diverses, à souder, à		vis et écrous de 3 mm
			river		vis et écrous de 4 mm
17		6	douilles diverses pour fiches		voyant lumineux
			bananes		Condensateur 50 MF 325 V
18			fiches bananes mâles		Condensateur 2 x 24/325 V
19		2	fiches de 3,5 mm Jack måle et femelle		potentiomètres 200 K S.I. potentiomètres 470 K S.I.
20		1	fiche DIN 2 broches måle pour		potentiomètre 250 K A.I.
		•	haut-parleur		potentiomètre 470 K A.I.
21		1	fiche DIN 2 broches femelle		transformateur 5 K pour lampes
			socle pour haut-parleur		Relais sur bakélite
22	. ~	1	fiche DIN 5 broches femelle-		
			prolongateur	P(OCHETTES A 5,00 F
23		1	fiche DIN 5 broches måle-pro-	<u></u>	
٠.			longateur		écouteur pour poste à transis-
24	-	1	fiche DIN 5 broches femelle		tors
25		•	socle fiches coaxiales de télévision		haut-parleur 5 à 7 cm - 20 ohms
25		2	fiches coaxiales de télévision (mâle)		plaques de circuit imprimé
26		2	fiches coaxiales de télévision		relais 2 contacts - 12 V transistor au choix : AC117K -
20		2	(femelle)		AC124 - AC175K - AC187 K -
27		3	fusibles verre jusqu'à 2 A		AC188K - AD142 - ASY27 -
28			inverseurs miniatures		ASY29 - 2N2646 - 2N2905
29			pinces crocodiles		Ferritte Ø 9,7, long. 200 mm
			passe-fils en caoutchouc ou plas-	107 5	m fil blindé 2 conducteurs
			tique	108 1	Lampe EL 84
31		2	potentiomètres 10 000 ohms, sans		Lampe E 80
			interrupteur		Lampe ECC 82
32	٠	1	potentiomètre 10 000 ohms, avec	108	Lampe ECC 83
			interrupteur	-	OCHETTES A 15 AA 5
		- 1	potentiomètre 5 000 ohms, avec	1 19	OCHETTES A 15,00 F

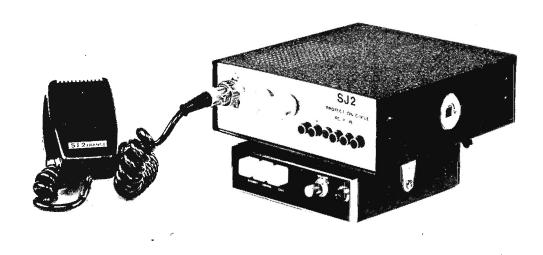
200 ---Moteur 4.5 à 9 V Micro Piézo Transfo 110/220 V - 12 V - 0,7 A

CONDITIONS DE VENTE

Pour une commande de 80 F. expédition franço de port et emballage. Pour un montant intérieur fortait d'expédition : 5 F.

interrupteur

2 répartiteurs de tension 110/220 V


15 résistances 1/4 ou 1/2 watt, de la ohm à 200 ohms

Pas d'envoi contre remboursement ; adressez chèque ou C.C.P. au nom de

M. BENAROIA Jacques 1, rue Dedouve, 94 GENTILLY - Tél. 253-91-99

Ouverture de 10 h à 18 h 30 sans interruption Fermé le dimanche et le lundi

LE RADIOTÉLÉPHONE SJ2

L existe à côté des grandes firmes internationales, de petites sociétés telle la société française SJ2, capables de fabriquer des matériels de la categorie des radiotéléphones qui sont dotés de performances générales tout à fait comparables à celles des appareils produits par les grandes firmes.

Le radiotéléphone SJ2 permet le trafic sur les six fréquences allouées à cette catégorie d'appareils par l'administration. Il peut être utilisé couplé à un dispositif d'appel sélectif, et l'une de ses versions est prévue comme tranceiver mobile pour la bande amateur des 10 mètres. Dans ce cas, différentes possibilités lui ont êté ajoutées, et sa puissance portée à une valeur nettement supérieure.

PRESENTATION

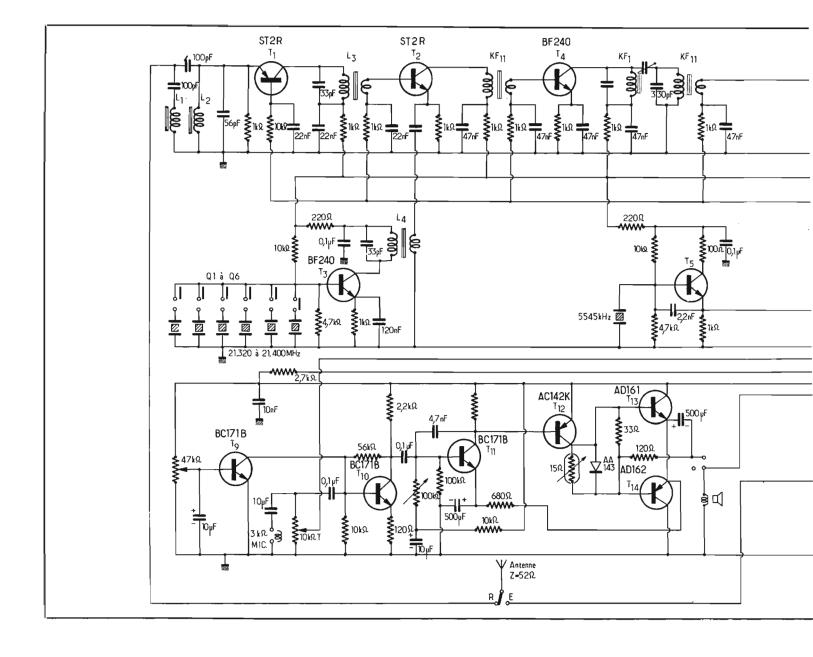
L'aspect de la face avant est très dépouillé, les commandes sont réduites au strict minimum. Les gadgets ne sont pas souhaitables pour des matériels de ce genre, destinés à une utilisation professionnelle. Les six fréquences sont commutées par boutons poussoirs sur un petit clavier, repérées par des lettres de A à F. Leur manœuvre est ra-

pide, et l'on enclenche d'un seul geste la fréquence de travail, ce qui présente un avantage par rapport au classique commutateur rotatif. Les commandes sont réduites aux potentiomètres de volume couple à l'arrêt marche, et au reglage du squelch. Sur la gauche de la face avant, une prise vérouillable au standard DIN permet le raccordement d'un microphone à pédale d'alternat. Aucun galvanomètre ni voyant de contrôle n'est installé, le galvanomètre sur ce genre d'appareil n'est pas indispensable, car ses indications sont tout à fait relatives, mais un voyant contrôlant la présence de HF et la modulation aurait pu être installé.

La sortie antenne est disposée sur le panneau arrière, sortie assurée à travers une prise coaxiale SO239. Un bouchon noval, disposé à sa gauche permet le raccordement au dispositif d'appel sélectif. Le panneau arrière sert également de dissipateur pour les deux transistors de puissance du modulateur. Un fil muni d'un porte-fusible permet de raccorder l'appareil à l'alimentation.

Tous les composants sont disposés sur un seul circuit imprimé; les fonctions émission et réception correctement séparées. Les commutations émission - réception sont assurées par un relais à 4 RT. La technique et la technologie sont modernes. Le récepteur est à double changement de fréquence, avec filtre céramique sur la seconde FI, le signal de CAG assurant une régulation en plusieurs points sur les étages HF et FI. A l'émission, la modulation est appliquée simultanément au driver et à l'amplificateur de puissance. Mis à part certains transistors, tous les composants sont de fabrication européenne. Le haut-parleur est d'un modèle elliptique 8 x 12 cm.

DESCRIPTION DES CIRCUITS


Emission. - La chaîne haute fréquence comporte trois étages. Le pilote, transistor T_{15} , est contrôlé par un quartz commutable selon la fréquence choisie, et disposé entre base et masse. Le signal est recueilli sur le collecteur dans la charge constituée par le transformateur accordé L_s. Le secondaire de ce transformateur est couplé à la base du transistor driver T_{16} , à travers un circuit RC. Le collecteur de T_{16} recoit sa tension d'alimentation à travers le secondaire du transformateur de modulation, une bobine d'arrêt bloquant les re-

montées HF vers celui-ci. La liaison driver pilote s'effectue à l'aide du transformateur accordé L₆, le secondaire attaquant la base du transistor T₁₇, du type BLY92B. Ce transistor est spé-cialement destine aux équipements d'émission en mobile, alimentés sous 12 V, il comporte une résistance de protection diffusée sur l'émetteur, et peut supporter une très importante désa daptation de la charge sans être détruit. La charge collecteur est assurée par un circuit en double pi accordant parfaitement l'impédance antenne à l'étage final. La modulation collecteur s'effectue comme sur l'étage driver, une bobine d'arrêt en série avec l'alimentation bloquant la HF.

Le modulateur est bien entendu commun à l'émission et à la réception, tous ses étages sont utilisés dans les deux fonctions.

Le signal du microphone dynamique attaque les circuits d'entrée base du transistor T_{10} après avoir été soumis à l'action du potentiomètre de volume. Une contre réaction d'émetteur est introduite par la résistance de 120Ω ; la base de cet étage reçoit en outre à la réception le signal squelch de blocage. La liaison à la base de l'étage suivant, transistor T_{11} est assurée à travers un condensateur de $0,1~\mu F$, ét le point de

Nº 1392 - Page 265

fonctionnement de ce transistor est ajusté par le potentiomètre de $100 \text{ k}\Omega$, ce qui détermine le courant de repos des transistors finals. Une boucle de contre réaction classique agit de la sortie à travers une résistance de 680Ω sur l'émetteur de T₁₁. A partir du collecteur de cet étage, le signal est transmis par liaison continue. Le transistor driver T₁₂ attaque la paire complémentaire T₁₃-T₁₄, dont la protection est assurée par une CTN disposée sur le dissipateur à proximité immédiate de ceux-ci. En sortie les signaux traversent un condensateur de 500 μ F puis sont dirigés vers le transformateur de modulation, ou vers le haut-parleur.

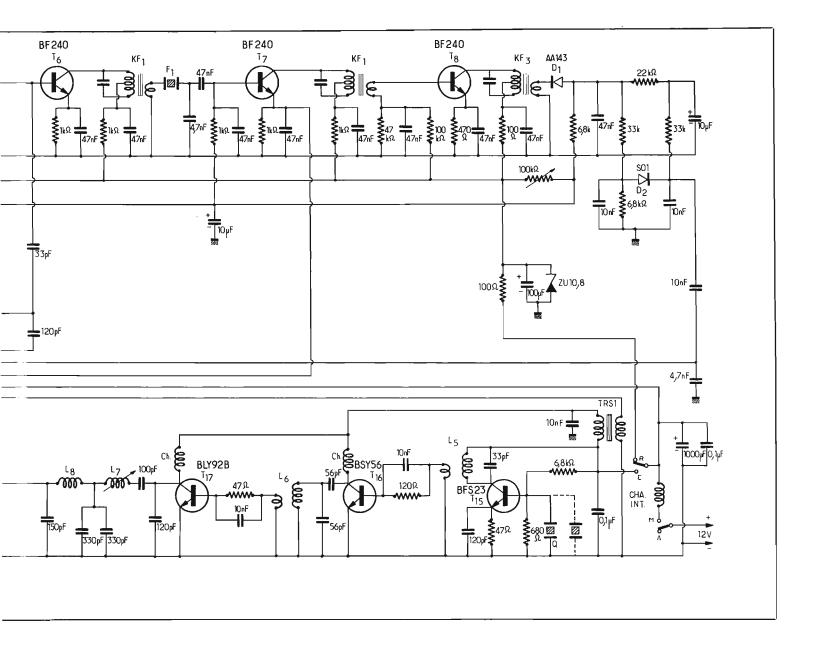
Réception. — La réception est à double changement de fréquence, la première fréquence intermédiaire est à 6 MHz, la seconde à 455 kHz.

Le signal issu de l'antenne est appliqué à travers un filtre de Page 266 – N° 1392 bande utilisant les bobinages L_1 et L_2 sur l'étage amplificateur haute fréquence monté en base commune, transistor T_1 , soumis sur cette électrode à l'action du signal de CAG. La liaison au transistor mélangeur T_2 est assurée par le secondaire du transformateur L_3 , sur la base de cet étage.

Le premier oscillateur local, transistor T₃ est stabilisé par quartz, l'injection sur le transistor mélangeur se fait à travers un condensateur sur l'émetteur de T₂. En sortie de T₂, nous trouvons le transformateur KF11 accordé sur la première fréquence FI à 6 MHz, qui attaque le transistor T₄, unique étage accordé sur la première FI. Deux circuits accordés dans le collecteur de ce transistor améliorent la sélectivité de l'étage, KF, et KF,... Les signaux sont ensuite dirigés sur la base du second mélangeur, transistor T₆, recevant également

sur sa base le signal du deuxième oscillateur local, à travers un condensateur de 33 pF. Le second oscillateur local, transistor T₅, est stabilisé par quartz, et il est à noter qu'il ne comporte pas de circuit accordé, le signal est prélevé sur son émetteur. A la sortie du transistor T₆, le signal est sur 455 kHz. Il traverse le filtre céramique FI, puis est amplifié par les deux étages T₇ et T₈. A la sortie de la chaîne FI, la diode D₁ redresse le signal de CAG, qui est appliqué à tous les étages, haute fréquence, mélangeurs, et FI à l'exclusion du dernier étage FI, le transistor T_e. Les signaux basse fréquence sont détectés par la diode D2, puis dirigés sur l'entrée du bloc basse fréquence, en traversant le potentiomètre de volume.

Le signal de commande du squelch est prélevé sur l'émetteur du transistor T₇, il est dosé par un potentiomètre avant d'être appliqué sur la base du transistor T_9 , qui bloque l'étage préamplificateur basse fréquence en l'absence de signal.


Tous les circuits haute fréquence sont alimentés par une tension stabilisée par diode zener.

MESURES

Nous avons contrôlé la puissance délivrée par l'émetteur, sur une charge pure de $50~\Omega$. Avec une tension d'alimentation de 12~V, celle-ci est de 3.2~W en HF pure, le taux de modulation atteint 100~%.

En réception, la sensibilité est de $0.5 \mu V$ pour un rapport signal + bruit bruit de 13 dB, la sélectivité de 4.5 kHz à - 6 dB.

La puissance basse fréquence est de 5 W, la bande passante de 200 à 3700 Hz - 3 dB.

TRAFIC

La mise en œuvre est simplifiée à l'extrême, et les performances sont tout à fait satisfaisantes. La sensibilité est grande, la protection contre les signaux parasites convenable. Une petite lacune pourtant, aucun voyant ne signale la mise sous tension ni n'assure de contrôle de l'emission. La puissance basse fréquence autorise un trafic confortable même lorsque le niveau sonore de la circulation est intense.

CONCLUSION

Nous sommes en présence d'un radiotéléphone bien réalisé. Ses caractéristiques sont comparables à celles d'équipements produits par les grandes firmes, bien qu'il ne comporte aucun gadget et que sa présentation soit un peu spartiate, sans toutefois nuire à la commodité et au confort du trafic.

CARACTERISTIQUES

Radiotéléphone bande 27 MHz. Fréquences de travail: 27 320, 27 330, 27 340, 27 380, 27 390, 27 400 kHz, commutables par touches.

Puissance de sortie: 3 W.
Taux de modulation: 100 %.
Impédance de sortie: 50 (2).
Récepteur à double changement de fréquence, 6 000 kHz,
455 kHz.

Possibilité d'utilisation couplé à un dispositif d'appel sélectif.

Alimentation: 12 V continu, négatif à la masse.

Encombrement: 220 x 170 x 62 mm, pour un poids de 2,220 kg avec microphone.

Pour voire collection, procurez-vous

- LA RELIURE « HAUT-PARLEUR » (Marron)
- LA RELIURE « HI-FI STÉRÉO » (Bleu)
- LA RELIURE

Au prix de **10 F** l'une + 2,50 F de port

«ÉLECTRONIQUE PROFESSIONNELLE» (Rouge)

Adressez commande à :

LE HAUT-PARLEUR
2 A 12, RUE DE BELLEVUE - 75019 PARIS

TÉL.: 202-58-30

C.C.P. 424-19 PARIS

J.B.

Garrard

LE PREMIER MAILLON DE VOTRE CHAINE HI-FI!

Module Zéro 100 S Erreur de piste = zéro

GARRARD vous ouvre les portes de la Haute-Fidélité avec ses tables de lecture manuelles ou semi-automatiques :

- le MODULE ZERO 100 S, socie design aluminium brossé, à deux vitesses.
 Son prix : 1,432 F* avec cellule elliptique Excel ES 70 E
- le MODULE AP 96 à 3 vitesses, socie design ébénisterie. Son prix : 1.060 F* avec cellule Excel ES 70 F
- l'AP 76 à 3 vitesses. Son prix : 872 F* avec cellule Excel ES 70 F
- Ia SP 25 MW III a 3 witesses, "le defi Garrard". Son prix : 572 F* avec cellelle Excel ES 70 S
- Tarif au 1,1,73

Quel que soit votre budget, vous trouverez toujours un modèle GARRARD spécialement conçu pour la HIFI

Diffusé par :

6 rue Denis Poisson - PA Tel 755-82-94

